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Universal algebra and lattice theory
Week 1

Introduction and background
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Introduction

Universal algebra is the study of algebraic structures.
There are three questions you may now have:

1 What is an algebraic structure?
2 What precisely do we study about algebraic structures?
3 Why should we do this?

I will explain how I came to study this subject in order to
answer these questions.
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Introduction

When I was about 12 I become interested in division by zero.
Having seen the introduction of new symbols to solve
equations like 2 + x = 1, 3x = 1, or x2 = −1, I wanted to
produce a new symbol, call it α, such that 0α = 1.
Doing arithmetic with α seemed challenging, since many of
the usual rules I knew didn’t work any more.
For example, we have that

(0 · 0)α = 0α = 1

while
0(0α) = 0 · 1 = 0,

so the associative law must fail, for I do not want 1 = 0.
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Introduction

Seven years later I was a student at Monroe Community
College and I was a bit more mathematically sophisticated.
I wrote a paper (laboriously, using the equation editor in
Microsoft Word) in which I defined a collection of apportional
numbers A as equivalence classes in analogy with the
definition of the rational numbers.
I defined a multiplication operation on these classes and
proved that it was well-defined.
My system failed to be associative, but I was also able to
prove that no such system could satisfy the associative law.
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Introduction

I did an independent study in abstract algebra at the end of
my time at community college, which covered group theory up
to the Fundamental Theorem of Finite Abelian Groups.
Inspired by my interest in division by zero, and now working a
bit more abstractly, I defined a new class of objects to study.
I said that a ripple is a set A equipped with a binary operation
· such that for each x ∈ A there exists some y ∈ A such that
x · y = y · x = x. (That is, x absorbs y.) There were no other
assumptions on the nature of the binary operation.
I was able to define direct products and isomorphisms for
ripples and I proved a few results about them.
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Introduction

After community college I transferred to the University of
Rochester.
While an undergraduate there I learned about rings and
modules in algebra courses, as well as their respective
definitions of homomorphisms, products, and Isomorphism
Theorems, which were all quite similar to those for groups.
I distinctly remember being told on at least one occasion that
we weren’t going to prove one of the Isomorphism Theorems
for a new class of algebraic structures because the proof was
basically the same as the one we had done before.
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Introduction

An example of a very similar pair of theorems is the following.

Theorem
Given a group homomorphism h:G1 → G2 we have that
G1/ker(h) ∼= h(G1). This isomorphism is given by g ker(h) 7→ h(g)
for g ∈ G1.

Theorem
Given a ring homomorphism h:R1 → R2 we have that
R1/ker(h) ∼= h(R1). This isomorphism is given by
r + ker(h) 7→ h(r) for r ∈ R1.
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Introduction

It seemed to me at this point logical that since groups, rings,
and modules were all «algebraic structures» that there should
be some general definition of an «algebra» with corresponding
homomorphisms, direct products, quotients, and so forth
which perhaps also included my own peculiar,
not-necessarily-associative, systems.
With such a setup one could hope to prove the Isomorphism
Theorems once and for all, without making reference to the
particular type of system under consideration.
By around 2015 I had written down some definitions which
were very similar to the following ones, which are standard.
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Operations

All of the algebraic structures we have seen (groups, rings,
modules, even my oddball examples) have a collection of
elements as well as ways to «add» or «multiply» them.
In a group G we can think of the product of two elements as
given by a function f :G × G → G. We can also think of the
sum and product in a ring in this way.
While most «multiplications» we see combine two elements to
produce one other one, nonbinary «multiplications» also exist.
These may combine three or more elements at once to
produce a new element. We would like to treat all of these in
the same way.
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Operations

We write W := {0, 1, 2, . . . } for the set of whole numbers.
Given a set A and some n ∈ W we define the collection of
n-tuples in A to be

An := { (a1, . . . , an) | a1, . . . , an ∈ A } .

We can also think of An as the set of all functions from
{1, 2, . . . ,n} to A.
The set An itself is called the nth Cartesian power of A.
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Operations

We describe An for small values of n.
We have that A0 contains a single element. We can think of
this element as the empty tuple () or as the empty function
e:∅ → A.
We have that A1 ∼= A since we can identify the 1-tuple (a)
with the element a for any a ∈ A.
Elements of A2 are ordered pairs (a1, a2) for a1, a2 ∈ A
Elements of A3 are ordered triples (a1, a2, a3) for
a1, a2, a3 ∈ A.
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Operations

Definition (Operation, arity)
Given a set A and some n ∈ W we refer to a function f :An → A
as an n-ary operation on A. When f is an n-ary operation on A
we say that f has arity n.

The case we’re most familiar with is n = 2, which is that of a
binary operation.
An operation of arity 0 amounts to choosing an element of A.
We call such operations constant or nullary.
An operation of arity 1 is essentially a function from A to
itself. We call such operations unary.
Operations of arity 3 are ways of «multiplying» exactly three
objects in a specified order to obtain another of the same
type. We call such operations ternary.
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Algebras

Definition (Algebra)
An algebra (A,F) consists of a set A and a sequence F = {fi}i∈I
of operations on A, indexed by some set I .

We often write A := (A,F) to indicate that we’re defining A
to be the algebra (A,F).
We refer to A as the universe of A.
We refer to the fi as the basic operations of A.
We’ve now answered the question «What is an algebraic
structure?».
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Algebras

We write N := {1, 2, . . . } for the set of natural numbers.
We often consider algebras A := (A,F = {fi}i∈I ) where
I = {1, 2, . . . , k} for some k ∈ N.
In this case we write A := (A, f1, f2, . . . , fk) rather than
A := (A,F).
Groups can be thought of as algebras of the form G := (G, ∗)
where G is the set of elements of the group and ∗:G2 → G is
the group multiplication.
Rings can similarly be thought of as algebras of the form
R := (R,+, ·) where R is the set of elements of the ring and
+ and · are the binary addition and multiplication operations,
respectively.
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Similarity types

Note that groups as formulated previously have only a single
binary operation, while rings have two binary operations.
To get started we only want to compare algebras whose
operations can be identified with each other.
Given an algebra A := (A, {fi}i∈I ) we define a map ρ: I → W
where ρ(i) := n when fi :An → A is an n-ary operation on A.
This map ρ: I → W is called the similarity type of A.
When two algebras A := (A,F) and B := (B,G) have the
same similarity type ρ: I → W we say that A and B are
similar algebras.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subalgebras and homomorphisms

Given a set A we denote by Sb(A) the powerset of A, or the
collection of all subsets of A.
Definition (Subalgebra, homomorphism)
Given algebras A := (A,F) and B := (B,G) of the same similarity
type ρ: I → W we say that

1 B is a subalgebra of A when B ⊂ A and for each i ∈ I we
have that gi = fi |Bρ(i) and

2 a function h:A → B is a homomorphism from A to B when
for each i ∈ I and all a1, . . . , aρ(i) ∈ A we have that

h(fi(a1, . . . , aρ(i))) = gi(h(a1), . . . , h(aρ(i))).
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Products

Direct (or external) products also generalize to arbitrary algebras.

Definition (Product)
Given a sequence

{
Aj := (Aj , {fi,j}i∈I )

}
j∈J of algebras of the

same similarity type ρ: I → W we define the product of {Aj} to be∏
j∈J

Aj := (A, {gi}i∈I )

where A :=
∏

j∈J Aj and gi :Aρ(i) → A is given by

gi({a1,j}j∈J , . . . ,
{

aρ(i),j
}

j∈J ) :=
{

fi,j(a1,j , . . . , aρ(i),j)
}

j∈J .
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Varieties

Some people say that universal algebra is the study of
varieties, which are classes of similar algebras closed with
respect to homomorphisms, subalgebras, and products.
This is an answer to the question «What precisely do we study
about algebraic structures?», although it is a little too
restrictive in my opinion.
I was initially unsure that universal algebra captured what I
wanted it to because I originally found that description of the
discipline.
I wanted something more down to earth to start with.
Namely, I wanted to have a set of tools so that if I was given,
for example, some crazy algebra A := (A, f1, f2) where
f1:A12 → A and f2:A313 → A I would be able to «understand
the structure» of that algebra or «decompose» it like I was
able to do with groups and rings.
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Motivation

We finally address the question «Why should we do this?».
First of all, I mainly wanted to understand the structure of
general algebras because I thought it would be cool. Happily,
universal algebra does provide tools for doing this.
Like any mathematical subject, people often study universal
algebra purely because they like the objects involved. Algebras
themselves play the role that numbers do in number theory
and later on we will see how to find special ones which are
analogous to the prime numbers.
Universal algebra has interesting ties to many areas of
mathematics, including a very strong connection to lattice
theory, which I will begin to describe next time.
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Motivation

Those connections will in some cases make themselves
apparent as one learns the basic tools and examples. We will
discuss others at the end of the semester. Some areas that
touch universal algebra include graph theory, analysis,
topology, and number theory. In pure algebra a great deal of
work has been done on varieties of groups.
The unified formulation of theorems and concepts in universal
algebra can make working with the objects of classical abstract
algebra easier. One gets a clearer idea of which properties
actually depend on the particular class of algebras in question.
Universal algebra also has applications in computer science.
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Thank you!


