Universal algebra and lattice theory Week 1 Examples of algebras

Charlotte Aten

2020 September 3

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Today's topics

Quick review of the definition of an algebra

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Magmas
- Semigroups
- Monoids
- Groups
- Rings
- Modules
- Quasigroups
- Semilattices
- Lattices
- *n*-ary magmas

Operations are rules for combining elements of a set together to obtain another element of the same set.

Definition (Operation, arity)

Given a set A and some $n \in W$ we refer to a function $f: A^n \to A$ as an *n*-ary operation on A. When f is an *n*-ary operation on A we say that f has arity n.

Algebras are sets with an indexed sequence of operations.

Definition (Algebra)

An algebra (A, F) consists of a set A and a sequence $F = \{f_i\}_{i \in I}$ of operations on A, indexed by some set I.

- An algebra $\mathbf{A} \coloneqq (A, f)$ with a single binary operation is called a *magma*.
- This is the Bourbaki terminology. These algebras are also known as *groupoids* and *binars*, but the term «groupoid» has also become attached to a different concept in category theory.
- When the set A is finite we can represent the basic operation $f: A^2 \rightarrow A$ as a finite table, called a *Cayley table* or *operation table* for f.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Magmas

f	r	p	s
r	r	p	r
p	p	p	s
s	r	s	s

Figure: A Cayley table for a binary operation f

The above table defines a binary operation $f: A^2 \to A$ where $A := \{r, p, s\}$. For example, f(r, p) = p. The magma $\mathbf{A} := (A, f)$ is the *rock-paper-scissors magma*.

Magmas

•	r	p	s
r	r	p	r
p	p	p	s
s	r	s	s

Figure: A Cayley table for a binary operation ·

We usually use *infix notation* for binary operations. For example, instead of f(x, y) we write $x \cdot y$. Any other symbol, such as +, *, or \circ , will work as well, but some have special connotations, such as + usually referring to a commutative operation.

Magmas

	r	p	s
r	r	p	r
p	p	p	s
s	r	s	s

Figure: A Cayley table for a binary operation

Going even further, we often use *concatenation notation* when there is only a single operation under consideration. We may write $\mathbf{A} := (A, f)$ or $\mathbf{A} := (A, \cdot)$ to define the rock-paper-scissors magma, then just write rp = p rather than f(r, p) = p or $r \cdot p = p$. (Naturally concatenation notation is my favorite, since it contains a version of my name.)

- When the universe A of a magma **A** := (A, f) is infinite (or even just very large) it is easier to specify f by way of some rule rather than writing out its Cayley table.
- For example, we can take $A \coloneqq \operatorname{Mat}_2(\mathbb{F}_{27})$ to be the set of 2×2 matrices over the field with 27 elements. We can then define an operation $f: A^2 \to A$ by $f(\alpha, \beta) \coloneqq \alpha\beta \beta\alpha$. This operation f has a finite Cayley table, but writing it out would take a lot of space. The algebra (A, f) is a magma.
- For an infinite example, take the magma (N, +) where + is defined in the usual way for natural numbers.

(日)((1))

Semigroups

A semigroup is a magma (S,\cdot) which satisfies the associative law

$$x \cdot (y \cdot z) \approx (x \cdot y) \cdot z.$$

- We write $\mathbb{Z} \coloneqq \{\dots, -2, -1, 0, 1, 2, \dots\}$ to indicate the set of integers.
- We have that (N, +), (W, +), and (Z, +) are all semigroups. Also, (N, +) is a subalgebra of (W, +) and (W, +) is a subalgebra of (Z, +).
- We have that (\mathbb{N}, \cdot) is a semigroup, but it is not a subalgebra of $(\mathbb{W}, +)$.

Monoids

• A monoid is an algebra $\mathbf{M} := (M, \cdot, e)$ such that (M, \cdot) is a semigroup and $e: M^0 \to M$ is a nullary operation such that \mathbf{M} satisfies the laws

$$x \cdot e \approx x$$
 and $e \cdot x \approx x$.

- We have that $(\mathbb{W}, +, 0)$ is a monoid, as is $(\mathbb{N}, \cdot, 1)$.
- An important example is the *full transformation monoid* (A^A, ∘, id_A) whose universe A^A consists of the set of all functions from a given set A to itself, whose binary operation ∘ is function composition, and whose constant operation «is» the identity map id_A: A → A given by id_A(a) := a for each a ∈ A.

What's the deal with that «squiggly equals sign» \approx ?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What's the deal with that «squiggly equals sign» \approx ?

An expression like $x(yz) \approx (xy)z$ stands for an *identity*, which is shorthand for the statement «For all possible values of x, y, and zwe have that x(yz) = (xy)z.». This statement is true in some magmas (the semigroups), but is false in other ones, like the rock-paper-scissors magma. We won't get too technical about it until much later, so don't dwell on it for now.

An aside about signatures

- We gave a strict definition for the notation (A, f_1, \ldots, f_k) last time. We said that this was shorthand for (A, F) where $F := \{f_i\}_{i \in I}$ where $I = \{1, 2, \ldots, k\}$.
- The signature of such an algebra is the function ρ: I → W taking each i ∈ {1, 2, ..., k} to the arity of ρ(i).
- Since a function $\rho: \{1, 2, \ldots, k\} \to \mathbb{W}$ is a k-tuple of whole numbers, we say that the signature of (A, f_1, \ldots, f_k) is $(\rho(1), \rho(2), \ldots, \rho(k)).$
- We will introduce algebras by saying things like «Consider an algebra $\mathbf{A} := (A, f, g, \star, +, u, 1)$ of signature (25, 7, 2, 2, 1, 0).».

Groups

• A group is an algebra $\mathbf{G} \coloneqq (G, \cdot, _^{-1}, e)$ such that (G, \cdot, e) is a monoid and $_^{-1}: G \to G$ is a unary operation such that \mathbf{G} satisfies

$$x \cdot x^{-1} \approx x^{-1} \cdot x \approx e$$

- We have that (Z, +, -, 0) is a group. According to our definition here (Z, +) is actually neither a group nor a monoid because it doesn't have the right signature, although it is a semigroup (and hence a special kind of magma).
- An important example is the *permutation group* **Perm**(A) := (Perm(A), o, _⁻¹, id_A) whose universe Perm(A) consists of the set of all bijections from a given set A to itself, whose binary operation o is function composition, whose unary operation _⁻¹ is given by taking the inverse function, and whose nullary operation «is» the identity map id_A.

Rings

• A ring is an algebra $\mathbf{R} \coloneqq (R, +, \cdot, -, 0)$ such that (R, +, -, 0) is an abelian group, (R, \cdot) is a semigroup, and the identities

$$x \cdot (y+z) \approx (x \cdot y) + (x \cdot z)$$

and

$$(y+z) \cdot x \approx (y \cdot x) + (z \cdot x)$$

hold.

- The algebra $(\mathbb{Z},+,\cdot,-,0)$ with the usual definition of \cdot for \mathbb{Z} is a ring.
- A point we haven't stressed too much until now is that the order of the basic operations matters. The algebra (Z, ·, +, -, 0) is different from (Z, +, ·, -, 0) and is not a ring according to our definition, even though both of these algebras have the signature (2, 2, 1, 0).

Modules

Given a ring R a (left) R-module is an algebra

$$\mathbf{M} \coloneqq (M, +, -, 0, \{\lambda_r\}_{r \in R})$$

such that (M,+,-,0) is an abelian group, for each $r\in R$ we have that λ_r is unary, and for each $r,s\in R$ we have that the laws

$$\lambda_r(x+y) \approx \lambda_r(x) + \lambda_r(y),$$
$$\lambda_{r+s}(x) \approx \lambda_r(x) + \lambda_s(x),$$

and

$$\lambda_r(\lambda_s(x)) \approx \lambda_{rs}(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

hold.

- We didn't follow either of our existing rules for specifying the sequence of basic operations for an algebra in the preceding definition. It is a little tedious, but not difficult, to carefully formalize what we just did.
- The similarity type of an R-module depends on the ring R, in contrast with the previous examples. If R is an infinite set then an R-module has infinitely many basic operations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• A quasigroup is an algebra $\mathbf{Q} \coloneqq (Q, \cdot, /, \setminus)$ of signature (2, 2, 2) which satisfies the laws

```
\begin{split} x \backslash (x \cdot y) &\approx y, \\ (x \cdot y) / y &\approx x, \\ x \cdot (x \backslash y) &\approx y, \end{split}
```

and

 $(x/y) \cdot y \approx x.$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Quasigroups

- Given a group $\mathbf{G} := (G, \cdot, _^{-1}, e)$ the algebra $(G, \cdot, /, \setminus)$ where $x/y := x \cdot y^{-1}$ and $x \setminus y := x^{-1} \cdot y$ is a quasigroup.
- Just as we often think of groups as being magmas with a particular type of binary operation (from which we can obtain the unary and nullary operations of the group), so too can we think of quasigroups as magmas with a particular type of binary operation (from which we can obtain the other two).
- A Latin square $\mathbf{Q} := (Q, \cdot)$ is a magma such that for all $a, b \in Q$ the equations

$$a \cdot x = b$$
 and $y \cdot a = b$

have unique solutions.

• Quasigroups and Latin squares are in bijective correspondence, as we can take $x = a \setminus b$ and y = b/a in the preceding equations.

Quasigroups

- Not all quasigroups come from the previous construction using groups.
- The algebra (ℤ, −) is a Latin square whose corresponding quasigroup does not arise from a group operation in this way.
- We denote by \mathbb{R} the set of *real numbers*. Fixing some $n \in \mathbb{N}$ we define $x \cdot y$ to be the midpoint of the segment joining x and y for any $x, y \in \mathbb{R}^n$. The algebra (\mathbb{R}^n, \cdot) is a Latin square.
- Quasigroup operations are typically not associative.
 Quasigroups are «nonassociative groups».
- Quasigroups with an identity element are called *loops*.

Semilattices

A semilattice is a commutative semigroup $\mathbf{S} := (S, \cdot)$ which satisfies the identity

 $x \cdot x \approx x.$

- Given $a, b \in \mathbb{Z}$ let $\min(a, b)$ and $\max(a, b)$ be the minimum and maximum of $\{a, b\}$, respectively. Both (\mathbb{Z}, \min) and (\mathbb{Z}, \max) are semilattices.
- Given a, b ∈ N let gcd(a, b) and lcm(a, b) be the greatest common divisor and least common multiple of {a, b}, respectively. Both (N, gcd) and (N, lcm) are semilattices.
- Both (Sb(A), ∩) and (Sb(A), ∪) are semilattices for any given set A.

Lattices

• A *lattice* is an algebra $\mathbf{L} := (L, \wedge, \vee)$ such that (L, \wedge) and (L, \vee) are semilattices and the identities

 $x \wedge (x \lor y) \approx x$ and $x \lor (x \wedge y) \approx x$

hold.

- We have that (\mathbb{Z}, \min, \max) , $(\mathbb{N}, \gcd, \operatorname{lcm})$, and $(\operatorname{Sb}(A), \cap, \cup)$ are lattices.
- In some of the earliest work which laid the foundations for lattice theory, Dedekind considered the lattice of subgroups of an abelian group A under the operations of intersection and internal direct sum.

- Weren't we going to see algebras with all sorts of crazy n-ary operations for n > 2? Where are those?
- Historically people seem to more frequently produce and study binary operations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An algebra $\mathbf{A} \coloneqq (A, f)$ of signature (n) is called an *n*-ary magma.

n-ary magmas

- An algebra A := (A, f) of signature (n) is called an n-ary magma.
- Fix an $n \in \mathbb{N}$. Given vectors $x_1, \ldots, x_{n-1} \in \mathbb{R}^n$ define $f(x_1, \ldots, x_{n-1})$ to be the determinant of

$$\begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ \vdots & \ddots & \vdots \\ x_{n-1,1} & \cdots & x_{n-1,n} \\ e_1 & \cdots & e_n \end{bmatrix}$$

where the e_i are standard basis vectors. The operation f is the *n*-dimensional cross product and (\mathbb{R}^n, f) is an (n-1)-ary magma.

- An algebra $\mathbf{A} \coloneqq (A, f)$ of signature (n) is called an *n*-ary magma.
- There are also *n*-ary analogues of groups and quasigroups which have received quite a bit of study.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ