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Universal algebra and lattice theory
Week 1

Examples of algebras

Charlotte Aten

2020 September 3
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Today’s topics

Quick review of the definition of an algebra
Magmas
Semigroups
Monoids
Groups
Rings
Modules
Quasigroups
Semilattices
Lattices
n-ary magmas
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Definition of an algebra

Operations are rules for combining elements of a set together to
obtain another element of the same set.
Definition (Operation, arity)
Given a set A and some n ∈ W we refer to a function f :An → A
as an n-ary operation on A. When f is an n-ary operation on A
we say that f has arity n.

Algebras are sets with an indexed sequence of operations.

Definition (Algebra)
An algebra (A,F) consists of a set A and a sequence F = {fi}i∈I
of operations on A, indexed by some set I .
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Magmas

An algebra A := (A, f ) with a single binary operation is called
a magma.
This is the Bourbaki terminology. These algebras are also
known as groupoids and binars, but the term «groupoid» has
also become attached to a different concept in category
theory.
When the set A is finite we can represent the basic operation
f :A2 → A as a finite table, called a Cayley table or operation
table for f .
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Magmas

f r p s
r r p r
p p p s
s r s s

Figure: A Cayley table for a binary operation f

The above table defines a binary operation f :A2 → A where
A := {r , p, s}. For example, f (r , p) = p. The magma A := (A, f )
is the rock-paper-scissors magma.
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Magmas

· r p s
r r p r
p p p s
s r s s

Figure: A Cayley table for a binary operation ·

We usually use infix notation for binary operations. For example,
instead of f (x, y) we write x · y. Any other symbol, such as +, ∗,
or ◦, will work as well, but some have special connotations, such as
+ usually referring to a commutative operation.
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Magmas

r p s
r r p r
p p p s
s r s s

Figure: A Cayley table for a binary operation

Going even further, we often use concatenation notation when
there is only a single operation under consideration. We may write
A := (A, f ) or A := (A, ·) to define the rock-paper-scissors
magma, then just write rp = p rather than f (r , p) = p or r · p = p.
(Naturally concatenation notation is my favorite, since it contains
a version of my name.)
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Magmas

When the universe A of a magma A := (A, f ) is infinite (or
even just very large) it is easier to specify f by way of some
rule rather than writing out its Cayley table.
For example, we can take A := Mat2(F27) to be the set of
2 × 2 matrices over the field with 27 elements. We can then
define an operation f :A2 → A by f (α, β) := αβ − βα. This
operation f has a finite Cayley table, but writing it out would
take a lot of space. The algebra (A, f ) is a magma.
For an infinite example, take the magma (N,+) where + is
defined in the usual way for natural numbers.
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Semigroups

A semigroup is a magma (S , ·) which satisfies the associative
law

x · (y · z) ≈ (x · y) · z.

We write Z := {. . . ,−2,−1, 0, 1, 2, . . . } to indicate the set of
integers.
We have that (N,+), (W,+), and (Z,+) are all semigroups.
Also, (N,+) is a subalgebra of (W,+) and (W,+) is a
subalgebra of (Z,+).
We have that (N, ·) is a semigroup, but it is not a subalgebra
of (W,+).
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Monoids

A monoid is an algebra M := (M , ·, e) such that (M , ·) is a
semigroup and e:M 0 → M is a nullary operation such that M
satisfies the laws

x · e ≈ x and e · x ≈ x.

We have that (W,+, 0) is a monoid, as is (N, ·, 1).
An important example is the full transformation monoid
(AA, ◦, idA) whose universe AA consists of the set of all
functions from a given set A to itself, whose binary operation
◦ is function composition, and whose constant operation «is»
the identity map idA:A → A given by idA(a) := a for each
a ∈ A.
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Hold on a minute

What’s the deal with that «squiggly
equals sign» ≈?

Is something being approximated?
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Hold on a minute

What’s the deal with that «squiggly
equals sign» ≈?

Is something being approximated?

An expression like x(yz) ≈ (xy)z stands for an identity, which is
shorthand for the statement «For all possible values of x, y, and z
we have that x(yz) = (xy)z.». This statement is true in some
magmas (the semigroups), but is false in other ones, like the
rock-paper-scissors magma. We won’t get too technical about it
until much later, so don’t dwell on it for now.
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An aside about signatures

We gave a strict definition for the notation (A, f1, . . . , fk) last
time. We said that this was shorthand for (A,F) where
F := {fi}i∈I where I = {1, 2, . . . , k}.
The signature of such an algebra is the function ρ: I → W
taking each i ∈ {1, 2, . . . , k} to the arity of ρ(i).
Since a function ρ: {1, 2, . . . , k} → W is a k-tuple of whole
numbers, we say that the signature of (A, f1, . . . , fk) is
(ρ(1), ρ(2), . . . , ρ(k)).
We will introduce algebras by saying things like «Consider an
algebra A := (A, f , g, ⋆,+, u, 1) of signature
(25, 7, 2, 2, 1, 0).».
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Groups

A group is an algebra G := (G, ·, −1, e) such that (G, ·, e) is
a monoid and −1:G → G is a unary operation such that G
satisfies

x · x−1 ≈ x−1 · x ≈ e.

We have that (Z,+,−, 0) is a group. According to our
definition here (Z,+) is actually neither a group nor a monoid
because it doesn’t have the right signature, although it is a
semigroup (and hence a special kind of magma).
An important example is the permutation group
Perm(A) := (Perm(A), ◦, −1, idA) whose universe Perm(A)
consists of the set of all bijections from a given set A to itself,
whose binary operation ◦ is function composition, whose
unary operation −1 is given by taking the inverse function,
and whose nullary operation «is» the identity map idA.
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Rings

A ring is an algebra R := (R,+, ·,−, 0) such that (R,+,−, 0)
is an abelian group, (R, ·) is a semigroup, and the identities

x · (y + z) ≈ (x · y) + (x · z)

and
(y + z) · x ≈ (y · x) + (z · x)

hold.
The algebra (Z,+, ·,−, 0) with the usual definition of · for Z
is a ring.
A point we haven’t stressed too much until now is that the
order of the basic operations matters. The algebra
(Z, ·,+,−, 0) is different from (Z,+, ·,−, 0) and is not a ring
according to our definition, even though both of these
algebras have the signature (2, 2, 1, 0).
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Modules

Given a ring R a (left) R-module is an algebra

M := (M ,+,−, 0, {λr}r∈R)

such that (M ,+,−, 0) is an abelian group, for each r ∈ R we
have that λr is unary, and for each r , s ∈ R we have that the
laws

λr(x + y) ≈ λr(x) + λr(y),

λr+s(x) ≈ λr(x) + λs(x),

and
λr(λs(x)) ≈ λrs(x)

hold.
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Modules

We didn’t follow either of our existing rules for specifying the
sequence of basic operations for an algebra in the preceding
definition. It is a little tedious, but not difficult, to carefully
formalize what we just did.
The similarity type of an R-module depends on the ring R, in
contrast with the previous examples. If R is an infinite set
then an R-module has infinitely many basic operations.
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Quasigroups

A quasigroup is an algebra Q := (Q, ·, /, \) of signature
(2, 2, 2) which satisfies the laws

x\(x · y) ≈ y,

(x · y)/y ≈ x,

x · (x\y) ≈ y,

and
(x/y) · y ≈ x.
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Quasigroups

Given a group G := (G, ·, −1, e) the algebra (G, ·, /, \)
where x/y := x · y−1 and x\y := x−1 · y is a quasigroup.
Just as we often think of groups as being magmas with a
particular type of binary operation (from which we can obtain
the unary and nullary operations of the group), so too can we
think of quasigroups as magmas with a particular type of
binary operation (from which we can obtain the other two).
A Latin square Q := (Q, ·) is a magma such that for all
a, b ∈ Q the equations

a · x = b and y · a = b

have unique solutions.
Quasigroups and Latin squares are in bijective correspondence,
as we can take x = a\b and y = b/a in the preceding
equations.
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Quasigroups

Not all quasigroups come from the previous construction using
groups.
The algebra (Z,−) is a Latin square whose corresponding
quasigroup does not arise from a group operation in this way.
We denote by R the set of real numbers. Fixing some n ∈ N
we define x · y to be the midpoint of the segment joining x
and y for any x, y ∈ Rn . The algebra (Rn , ·) is a Latin square.
Quasigroup operations are typically not associative.
Quasigroups are «nonassociative groups».
Quasigroups with an identity element are called loops.
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Semilattices

A semilattice is a commutative semigroup S := (S , ·) which
satisfies the identity

x · x ≈ x.

Given a, b ∈ Z let min(a, b) and max(a, b) be the minimum
and maximum of {a, b}, respectively. Both (Z,min) and
(Z,max) are semilattices.
Given a, b ∈ N let gcd(a, b) and lcm(a, b) be the greatest
common divisor and least common multiple of {a, b},
respectively. Both (N, gcd) and (N, lcm) are semilattices.
Both (Sb(A),∩) and (Sb(A),∪) are semilattices for any given
set A.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Lattices

A lattice is an algebra L := (L,∧,∨) such that (L,∧) and
(L,∨) are semilattices and the identities

x ∧ (x ∨ y) ≈ x and x ∨ (x ∧ y) ≈ x

hold.
We have that (Z,min,max), (N, gcd, lcm), and (Sb(A),∩,∪)
are lattices.
In some of the earliest work which laid the foundations for
lattice theory, Dedekind considered the lattice of subgroups of
an abelian group A under the operations of intersection and
internal direct sum.
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n-ary magmas

Weren’t we going to see algebras with all sorts of crazy n-ary
operations for n > 2? Where are those?
Historically people seem to more frequently produce and study
binary operations.
An algebra A := (A, f ) of signature (n) is called an n-ary
magma.
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n-ary magmas

An algebra A := (A, f ) of signature (n) is called an n-ary
magma.
Fix an n ∈ N. Given vectors x1, . . . , xn−1 ∈ Rn define
f (x1, . . . , xn−1) to be the determinant of

x1,1 · · · x1,n
... . . . ...

xn−1,1 · · · xn−1,n
e1 · · · en


where the ei are standard basis vectors. The operation f is
the n-dimensional cross product and (Rn , f ) is an (n − 1)-ary
magma.
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n-ary magmas

An algebra A := (A, f ) of signature (n) is called an n-ary
magma.
There are also n-ary analogues of groups and quasigroups
which have received quite a bit of study.


