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Universal algebra and lattice theory
Week 2

Homomorphisms, subalgebras, and products
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Today’s topics

Preparatory work: eliminating some indices
Homomorphisms, monoids, and groups
Subalgebras and subuniverses
Products
The operators H, S, and P
Generating subalgebras
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Preparatory work: eliminating some indices

We previously noted that most of our basic concepts only
make sense for algebras of the same similarity type ρ: I → W.
If we fix our index set to be a collection F of operation
symbols and we fix a similarity type ρ:F → W then we can
express an algebra as

A := (A,FA)

where each member f A ∈ FA is a ρ(f )-ary operation on A.
Note that a particular f ∈ F is just taken as an abstract
symbol with a specified arity ρ(f ), while f A is actually a
function.
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Preparatory work: eliminating some indices

For example, we can focus our attention on (the similarity
type of) rings by fixing operation symbols a, m, n, and z of
arities 2, 2, 1, and 0, respectively.
Given a ring R and some a, b ∈ R we would then write
mR(a, b) to indicate the product of a and b, nR(a) to
indicate the additive inverse of a, and so on.
When context allows we write m(a, b) rather than mR(a, b).
We can use similar notation for infix symbols as well. Thus,
a ·R b may be used instead of mR(a, b). The superscript
specifying the algebra may be omitted in this case too,
context permitting.
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Homomorphisms, monoids, and groups

Recall the definition we already gave for a homomorphism of
algebras.

Definition (Homomorphism)
Given algebras A := (A,F) and B := (B,G) of the same similarity
type ρ: I → W we say that a function h:A → B is a
homomorphism from A to B when for each i ∈ I and all
a1, . . . , aρ(i) ∈ A we have that

h(fi(a1, . . . , aρ(i))) = gi(h(a1), . . . , h(aρ(i))).
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Homomorphisms, monoids, and groups

With our new notation this definition becomes cleaner.
Definition (Homomorphism)
Given algebras A := (A,FA) and B := (B,FB) we say that a
function h:A → B is a homomorphism from A to B when for each
f ∈ F of arity n and all a1, . . . , an ∈ A we have that

h(f A(a1, . . . , an)) = f B(h(a1), . . . , h(an)).
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Homomorphisms, monoids, and groups

We give some more terminology pertaining to
homomorphisms.
We refer to injective homomorphisms as embeddings.
When h:A → B is a surjective homomorphism we say that B
is a homomorphic image of A.
A bijective homomorphism is said to be an isomorphism.
A homomorphism h:A → A is called an endomorphism. The
set of all endomorphisms of A is denoted by End(A)

An isomorphism h:A → A is called an automorphism. The
set of all automorphisms of A is denoted by Aut(A).
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Homomorphisms, monoids, and groups

If g:A → B and h:B → C are homomorphisms then h ◦ g is
also a homomorphism.
Given an algebra A we have that

End(A) := (End(A), ◦, idA)

is a monoid and

Aut(A) := (Aut(A), ◦, −1, idA)

is a group.
We refer to an algebra whose universe consists of a single
element as a trivial algebra.
We call an algebra A rigid when Aut(A) is trivial.
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Subalgebras and subuniverses

Using our new notation for introducing algebras we can rewrite our
old definition of a subalgebra.

Definition (Subalgebra)
Given algebras A := (A,FA) and B := (B,FB) we say that B is
a subalgebra of A when B ⊂ A and for each f ∈ F of arity n we
have that f B = f A|Bn .
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Subalgebras and subuniverses

We will often want to intersect two subalgebras in order to obtain
another subalgebra. In order to do this, we make use of the
following concept.

Definition (Subuniverse)
Given an algebra A we say that B ⊂ A is a subuniverse of A when
B is the universe of a subalgebra B of A.

The collection of all subuniverses of an algebra A is denoted by
Sub(A). We always have that A ∈ Sub(A).
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Digression: empty algebras

We say that an algebra whose universe is ∅ is an empty
algebra.
The basic operations of such an algebra are all empty
functions.
An empty algebra of a particular signature ρ:F → W can only
exist if for each f ∈ F we have that ρ(f ) ̸= 0.
Some authors do not allow empty algebras. The discussion of
the merits of accepting empty algebras or not is mostly
beyond the scope of this lecture.
Note that the empty set is a subuniverse of any algebra whose
basic operations contain no nullary operations.
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Products

Just as we did with homomorphisms and subalgebras, we can also
rewrite our definition of products using our new notation.

Definition (Product)
Given a sequence

{
Aj := (Aj ,FAj )

}
j∈J of algebras we define the

product of {Aj} to be ∏
j∈J

Aj := (A,FA)

where A :=
∏

j∈J Aj and for each f ∈ F of arity n we specify that
f A:An → A is given by

f A({a1,j}j∈J , . . . , {an,j}j∈J ) :=
{

f Aj (a1,j , . . . , an,j)
}

j∈J
.
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Products

When a product
∏

j∈J Aj is indexed over the set
J = {1, 2, . . . , k} for some k ∈ N we write

A1 × A2 × · · · × Ak .

In this case we think of elements of the product as tuples
(a1, a2, . . . , ak) where aj ∈ Aj .
In the simplest nontrivial case, we can take the direct product
A1 ×A2. Given an operation symbol f of arity n we have that

f A1×A2((a1,1, a1,2), (a2,1, a2,2) . . . , (an,1, an,2))

= (f A1(a1,1, a2,1, . . . , an,1), f A2(a1,2, a2,2, . . . , an,2)).
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Products

We define AI :=
∏

i∈I Ai where Ai := A for each i ∈ I . We
call AI the I th direct power of A.
We can think of elements of AI as functions from I to A.
The operations of AI act componentwise on these functions
according to our previous definition.
When I = {1, 2, . . . , k} for some k ∈ N we write Ak rather
than AI . We write A0 rather than A∅.
You should convince yourself that A0 is a trivial algebra for
any A and that A1 ∼= A.
For a familiar example, consider the ring of real functions

(R,+, ·,−, 0)R.
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The operators H, S, and P

As we progress in our study of universal algebra we will often be
concerned with the following three operators, which produce new
classes of algebras from old ones.

Definition
Given a class K of similar algebras we define

H(K) to be the class of all homomorphic images of members
of K,
S(K) to be the class of all algebras which are isomorphic to a
subalgebra of a member of K, and
P(K) to be the class of all algebras which are isomorphic to a
direct product of members of K.
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The operators H, S, and P

Note that H, S, and P are defined so that each of the classes
H(K), S(K), and P(K) are closed under isomorphic images,
no matter what K is.
Given an operator O taking classes of similar algebras to other
classes of algebras we say that a class K is closed under O
when O(K) ⊂ K.
A variety is a class of similar algebras K which is closed under
H, S, and P.
Universal algebra was initiated as a mathematical discipline
during the 1930s. Since the 1970s the subject has increasingly
focused on varieties. Our treatment will parallel this
development.
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Generating subalgebras

We said previously that we defined subuniverses so that we could
take intersections of subalgebras. The follow proposition moves us
in that direction.
Proposition
Given an algebra A and a collection of subuniverses S of A we
have that

∩
S is a subuniverse of A.
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Generating subalgebras

We also would like to consider the smallest subuniverse containing
some specified elements of an algebra.

Definition (Subuniverse generated by a set)
Given an algebra A and X ⊂ A we define the subuniverse of A
generated by X to be

SgA(X) :=
∩

{U ∈ Sub(A) | X ⊂ U } .

The previous proposition tells us that Sg(X) is indeed a
subuniverse of A. Note that Sg(X) must contain X .
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Generating subalgebras

Instead of taking this «top-down» viewpoint using intersections we
can give a «bottom-up» description of SgA(X) by taking unions.

Theorem
Given an algebra A := (A,F) and X ⊂ A we define X0 := X and
for each n ∈ N we define Xn to be

Xn−1 ∪ { f (a1, . . . , ak) | f ∈ F , ρ(f ) = k, and a1, . . . , ak ∈ Xn−1 } .

We have that SgA(X) =
∪

n∈W Xn .
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Generating subalgebras

We sketch the proof that SgA(X) =
∪

n∈W Xn .
Take Y :=

∪
n∈W Xn . It suffices to show that SgA(X) ⊂ Y

and that Y ⊂ SgA(X).
In order to show that SgA(X) ⊂ Y we can show that Y is a
subuniverse of A containing X , but this is evident from the
construction of Y .
In order to show that Y ⊂ SgA(X) we use induction on n to
show that each of the Xn are contained in Sg(X).
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Generating subalgebras

A consequence of the preceding result is that if a ∈ SgA(X)
for some a ∈ A then there is some finite Y ⊂ X such that
a ∈ Sg(Y ).
We say that an algebra A is finitely generated when there
exists some finite Y ⊂ A such that A = SgA(Y ).


