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Relations

m Given a set A and some n € N we refer to a subset of A™ as a
relation on A of arity n (or as an n-ary relation on A).

m In this talk we will focus on relations of arity 2, which are also
called binary relations. We'll see more of the general relations
on another day.

m There are a number of ways of getting new binary relations
from old ones.

m Given binary relations 6 and 1 on a set A we have that § N
and 6 U are also binary relations on A.



Relations

m For binary relations 6 and ¥ on A we define the relative
product of 6 and i by

forp = {(z,2) € A? | (Jy € A)((z,y) €0 and (y,2) €¥) }.

m Note that while the relative product is similar to function
composition, the order of the arguments is reversed.

m We also have a unary operation on binary relations on A.
Given 6 C A2 we define the converse of @ by

Hv:{(y,x)eAQ‘(:B,y)EH}.

m We often write z 6 y instead of (z,y) € 0.



Relations

We are often concerned with the following type of binary relation.
Definition (Equivalence relation)

We say that a binary relation 6 on a set A is an equivalence
relation when for all z,y, 2 € A we have that

(reflexivity) z 0 z,

(symmetry) z 6 y implies that y 6 z, and

(transitivity) if 6 y and y 0 z then z 0 2.



Relations

m We denote by Eq(A) the set of all equivalence relations on
the set A.

m We define 04 == { (z,z) € A> |z € A} and 14 := A%. We
have that 04 and 14 are equivalence relations on A.
m For any 6 € Eq(A) we have that 04 C 6 C 14.

m When 6 is an equivalence relation we may use the special
notation

z=y (modf)orzx=py
rather than z 6 y or (z,y) € 6.



Relations

Now that we have some more notation we can rewrite our
definition of an equivalence relation a little more symbolically.

Definition (Equivalence relation)
We say that a binary relation 6 on a set A is an equivalence
relation when

(reflexivity) 04 C 6,

(symmetry) 6~ C 6, and

(transitivity) 6 o 6 C 6.



Kernels

To each function we associate a binary relation as follows.
Definition (Kernel)

Given a function f: A — B the kernel of f is the binary relation

ker(f) = { (z,y) € 42 | f(z) = f(y) } -

We always have that ker(f) is an equivalence relation on A.
Is every equivalence relation the kernel of a function?



Kernels

m The answer is yes.

m Given an equivalence relation ¢ on a set A and some a € A
we define the equivalence class of a modulo 6 to be

a/f ={zcA|labz}.

m We have that {a/f | a € A} is a partition of A, which is
another way you may have seen to think about equivalence
relations on A.

m We refer to A/ :={a/0 | a € A} as the quotient of A by 6.

m Define gp: A — A/0 by gp(a) := a/0. We find that
0 = ker(gp).



Congruences

It turns out that the kernels of homomorphisms of algebras always
have additional structure.

Definition (Substitution property, congruence)

Given an algebra A and a binary relation 6 on A we say that

6 has the substitution property (with respect to A) when for
each n-ary basic operation f of A and all

TiyennsTn, Yy ---, Yn € A such that z; 0 y; for each
i€{1,2,...,n} we have that f(z1,...,2,) 0 f(y1,..., Yn)
and

0 is a congruence of A when 6 has the substitution property
and is an equivalence relation on A.



Congruences

m The kernel of any homomorphism (indeed, any function) is an
equivalence relation.

m Using the definition of a homomorphism we see that the
kernel of each homomorphism has the substitution property
and is thus a congruence.

m Is every congruence the kernel of a homomorphism?



Congruences

m The answer is again yes.

m We can show this by turning the map ¢g: A — A/6 into a
homomorphism.

m In order to do that we need to define an algebra A /6 with
universe A/6 such that gg: A — A /0 becomes a
homomorphism.

m Given a basic n-ary operation symbol f and some
ai,...,a, € A we need that

QG(fA(alv sy an)) = fA/G(qe(al)v sy q9(an))'

m This means we require

A ar, .. a)/0 = 2% (a1/0, . .., an/0),

which we take as our definition of fA/¢.



Quotient algebras

The algebras A /6 given by the preceding construction are going to
be very important to us, so we name them.

Definition (Quotient algebra)

Given an algebra A and a congruence 6 of A the quotient algebra
of A by 0 is the algebra A /6 similar to A with universe A/6 where
for each basic n-ary operation symbol f and all a1,...,a, € A we
define

FA°(a1/8, ... an/6) = fA(ar,. .., an) /6.



Quotient algebras

We always have that 04 and 14 are congruences for any
algebra A.

m Moreover, A/04 = A and A /14 is a trivial algebra.
m Many algebras have congruences other than 0 and 1.

m Trivial algebras have only one congruence, which is both 0
and 1.

m A nontrivial algebra with only the two congruences 0 and 1 is
called simple.

m Simple algebras are special cases of more general «building
blocks» for all algebraic structures. We'll come back to them
later.



Kernels and groups

The preceding definitions of a kernel and a congruence do actually
generalize those of a kernel and normal subgroup in group theory.
Theorem
Take G to be a group.

Given a normal subgroup N of G we have that

HN::{(x,y)€G2‘y_1:r€N}

is a congruence of G. For each x € G we have that
zN = z/0N.

Given a congruence 6 of G we have that e/0 is (the universe
of ) a normal subgroup of G.

The map N — 0N is an order-preserving bijection from
normal subgroups of G to congruences of G.



The Homomorphism Theorem

We can finally start formulating the Isomorphism Theorems for all
algebras.

Theorem (The Homomorphism Theorem)

Given a homomorphism h: A — B with kernel 6 we have that
there exists a unique embedding h: A /0 — B such that ho gy = h.
When h is surjective we have that h is an isomorphism.

A" .B

%l o
' h

A/f



Generating congruences

Just as we discussed the subuniverse generated by a set previously,
we can also examine congruences generated by a set.

Proposition

Given an algebra A and a collection © of congruences of A we
have that (O is a congruence of A.

The proof of this statement is quite similar to that of the
corresponding proposition for subuniverses.



Generating congruences

We can consider the smallest congruence of A containing a set of
pairs. We denote by Con(A) the set of all congruences of A.

Definition (Congruence generated by a set)

Given an algebra A and v C A? we define the congruence of A
generated by v to be

Cg*(v) :=(){0 € Con(A) v CO}.

The previous proposition tells us that Cg(v) is indeed a
congruence of A. Note that Cg(v) must contain v.



Generating congruences

m Instead of taking this «top-downy viewpoint using
intersections we can give a «bottom-up» description of
Sg?(X) by taking unions.

m It will be very convenient to have some more notation before
we proceed. We will write a € A™ to indicate that
a=(ay,...,a,) for some ay,...,a, € A.

m Given some v C A2 we write a v b to indicate that a; v b; for
each i € {1,2,...,n}.

m Note that we can reformulate the substitution property as
saying that a 6 b implies that f(a) 6 f(b) for any tuples a
and b and any basic operation f.



Generating congruences

We can now give our «bottom-up» description of Cg? (v).

Theorem

Given an algebra A := (A, F) and v C A? we define
vy :=vUv~ U0y and for each n € N we define v,, to be

(Vn-10vn-1) U{(f(a),f(b)) € A*|fEFandav,1b}.

We have that Cg®(v) = Unew Vn-



Generating congruences

m Congruences which can be written as Cg(v) where v is finite
are called finitely generated.

m We will be particularly interested in congruences of the form
Cg({(z,y)}), which are called principal congruences.

m We usually indicate principal congruences by Cg(x, y) rather
than Cg({(z,y)}).



