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Today’s topics

Relations
Kernels
Congruences
Quotient algebras
Kernels and groups
The Homomorphism Theorem
Generating congruences
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Relations

Given a set A and some n ∈ N we refer to a subset of An as a
relation on A of arity n (or as an n-ary relation on A).
In this talk we will focus on relations of arity 2, which are also
called binary relations. We’ll see more of the general relations
on another day.
There are a number of ways of getting new binary relations
from old ones.
Given binary relations θ and ψ on a set A we have that θ ∩ ψ
and θ ∪ ψ are also binary relations on A.
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Relations

For binary relations θ and ψ on A we define the relative
product of θ and ψ by

θ ◦ψ :=
{
(x, z) ∈ A2 ∣∣ (∃y ∈ A)((x, y) ∈ θ and (y, z) ∈ ψ)

}
.

Note that while the relative product is similar to function
composition, the order of the arguments is reversed.
We also have a unary operation on binary relations on A.
Given θ ⊂ A2 we define the converse of θ by

θ⌣ =
{
(y, x) ∈ A2 ∣∣ (x, y) ∈ θ

}
.

We often write x θ y instead of (x, y) ∈ θ.
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Relations

We are often concerned with the following type of binary relation.

Definition (Equivalence relation)
We say that a binary relation θ on a set A is an equivalence
relation when for all x, y, z ∈ A we have that

1 (reflexivity) x θ x,
2 (symmetry) x θ y implies that y θ x, and
3 (transitivity) if x θ y and y θ z then x θ z.
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Relations

We denote by Eq(A) the set of all equivalence relations on
the set A.
We define 0A :=

{
(x, x) ∈ A2 ∣∣ x ∈ A

}
and 1A := A2. We

have that 0A and 1A are equivalence relations on A.
For any θ ∈ Eq(A) we have that 0A ⊂ θ ⊂ 1A.
When θ is an equivalence relation we may use the special
notation

x ≡ y (mod θ) or x ≡θ y

rather than x θ y or (x, y) ∈ θ.
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Relations

Now that we have some more notation we can rewrite our
definition of an equivalence relation a little more symbolically.

Definition (Equivalence relation)
We say that a binary relation θ on a set A is an equivalence
relation when

1 (reflexivity) 0A ⊂ θ,
2 (symmetry) θ⌣ ⊂ θ, and
3 (transitivity) θ ◦ θ ⊂ θ.
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Kernels

To each function we associate a binary relation as follows.

Definition (Kernel)
Given a function f :A → B the kernel of f is the binary relation

ker(f ) :=
{
(x, y) ∈ A2 ∣∣ f (x) = f (y)

}
.

We always have that ker(f ) is an equivalence relation on A.
Is every equivalence relation the kernel of a function?
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Kernels

The answer is yes.
Given an equivalence relation θ on a set A and some a ∈ A
we define the equivalence class of a modulo θ to be

a/θ := { x ∈ A | a θ x } .

We have that { a/θ | a ∈ A } is a partition of A, which is
another way you may have seen to think about equivalence
relations on A.
We refer to A/θ := { a/θ | a ∈ A } as the quotient of A by θ.
Define qθ:A → A/θ by qθ(a) := a/θ. We find that
θ = ker(qθ).
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Congruences

It turns out that the kernels of homomorphisms of algebras always
have additional structure.
Definition (Substitution property, congruence)
Given an algebra A and a binary relation θ on A we say that

1 θ has the substitution property (with respect to A) when for
each n-ary basic operation f of A and all
x1, . . . , xn , y1, . . . , yn ∈ A such that xi θ yi for each
i ∈ {1, 2, . . . ,n} we have that f (x1, . . . , xn) θ f (y1, . . . , yn)
and

2 θ is a congruence of A when θ has the substitution property
and is an equivalence relation on A.
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Congruences

The kernel of any homomorphism (indeed, any function) is an
equivalence relation.
Using the definition of a homomorphism we see that the
kernel of each homomorphism has the substitution property
and is thus a congruence.
Is every congruence the kernel of a homomorphism?
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Congruences

The answer is again yes.
We can show this by turning the map qθ:A → A/θ into a
homomorphism.
In order to do that we need to define an algebra A/θ with
universe A/θ such that qθ:A → A/θ becomes a
homomorphism.
Given a basic n-ary operation symbol f and some
a1, . . . , an ∈ A we need that

qθ(f A(a1, . . . , an)) = f A/θ(qθ(a1), . . . , qθ(an)).

This means we require

f A(a1, . . . , an)/θ = f A/θ(a1/θ, . . . , an/θ),

which we take as our definition of f A/θ.
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Quotient algebras

The algebras A/θ given by the preceding construction are going to
be very important to us, so we name them.

Definition (Quotient algebra)
Given an algebra A and a congruence θ of A the quotient algebra
of A by θ is the algebra A/θ similar to A with universe A/θ where
for each basic n-ary operation symbol f and all a1, . . . , an ∈ A we
define

f A/θ(a1/θ, . . . , an/θ) := f A(a1, . . . , an)/θ.
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Quotient algebras

We always have that 0A and 1A are congruences for any
algebra A.
Moreover, A/0A ∼= A and A/1A is a trivial algebra.
Many algebras have congruences other than 0 and 1.
Trivial algebras have only one congruence, which is both 0
and 1.
A nontrivial algebra with only the two congruences 0 and 1 is
called simple.
Simple algebras are special cases of more general «building
blocks» for all algebraic structures. We’ll come back to them
later.
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Kernels and groups

The preceding definitions of a kernel and a congruence do actually
generalize those of a kernel and normal subgroup in group theory.

Theorem
Take G to be a group.

1 Given a normal subgroup N of G we have that

θN :=
{
(x, y) ∈ G2 ∣∣ y−1x ∈ N

}
is a congruence of G. For each x ∈ G we have that
xN = x/θN.

2 Given a congruence θ of G we have that e/θ is (the universe
of) a normal subgroup of G.

3 The map N 7→ θN is an order-preserving bijection from
normal subgroups of G to congruences of G.
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The Homomorphism Theorem

We can finally start formulating the Isomorphism Theorems for all
algebras.

Theorem (The Homomorphism Theorem)
Given a homomorphism h:A → B with kernel θ we have that
there exists a unique embedding h̄:A/θ → B such that h̄ ◦ qθ = h.
When h is surjective we have that h̄ is an isomorphism.

A B

A/θ

h

qθ
h̄
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Generating congruences

Just as we discussed the subuniverse generated by a set previously,
we can also examine congruences generated by a set.

Proposition
Given an algebra A and a collection Θ of congruences of A we
have that

∩
Θ is a congruence of A.

The proof of this statement is quite similar to that of the
corresponding proposition for subuniverses.
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Generating congruences

We can consider the smallest congruence of A containing a set of
pairs. We denote by Con(A) the set of all congruences of A.

Definition (Congruence generated by a set)
Given an algebra A and ν ⊂ A2 we define the congruence of A
generated by ν to be

CgA(ν) :=
∩

{ θ ∈ Con(A) | ν ⊂ θ } .

The previous proposition tells us that Cg(ν) is indeed a
congruence of A. Note that Cg(ν) must contain ν.
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Generating congruences

Instead of taking this «top-down» viewpoint using
intersections we can give a «bottom-up» description of
SgA(X) by taking unions.
It will be very convenient to have some more notation before
we proceed. We will write a ∈ An to indicate that
a = (a1, . . . , an) for some a1, . . . , an ∈ A.
Given some ν ⊂ A2 we write a ν b to indicate that ai ν bi for
each i ∈ {1, 2, . . . ,n}.
Note that we can reformulate the substitution property as
saying that a θ b implies that f (a) θ f (b) for any tuples a
and b and any basic operation f .
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Generating congruences

We can now give our «bottom-up» description of CgA(ν).

Theorem
Given an algebra A := (A,F) and ν ⊂ A2 we define
ν0 := ν ∪ ν⌣ ∪ 0A and for each n ∈ N we define νn to be

(νn−1 ◦ νn−1) ∪
{
(f (a), f (b)) ∈ A2 ∣∣ f ∈ F and a νn−1 b

}
.

We have that CgA(ν) =
∪

n∈W νn .
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Generating congruences

Congruences which can be written as Cg(ν) where ν is finite
are called finitely generated.
We will be particularly interested in congruences of the form
Cg({(x, y)}), which are called principal congruences.
We usually indicate principal congruences by Cg(x, y) rather
than Cg({(x, y)}).


