Universal algebra and lattice theory Week 3 Posets and lattices

Charlotte Aten

2020 September 15

Today's topics

- Motivation
- Some history
- Posets
- Lattices
- Isotone maps and homomorphisms
- Isotone maps and continuous maps
- The lattice of open sets
- Lattices in probability

Motivation

Recall the definition of a lattice we gave before.

Definition (Lattice)

A lattice is an algebra $\mathbf{L} \coloneqq (L, \wedge, \vee)$ such that (L, \wedge) and (L, \vee) are semilattices and the identities

$$x \wedge (x \vee y) \approx x \text{ and } x \vee (x \wedge y) \approx x$$

hold.

Motivation

- Lattices are going to serve as interesting examples of algebras which don't look much like groups or rings.
- At the same time, understanding lattices will help us with the theory of general algebras.
- We will see on another day how to make collections of congruences, subuniverses, and varieties into lattices.
- Lattice theory has deep ties to many other areas of math, including combinatorics, topology, and probability.

Some history

- George Boole introduced what are now called Boolean algebras (which are special kinds of lattices) in the nineteenth century.
- Alfred North Whitehead first used the expression «universal algebra» in his 1898 book «A Treatise on Universal Algebra», which included both groups and Boolean algebras.
- Richard Dedekind, as we previously remarked, worked with lattices of subgroups around the year 1900.

Some history

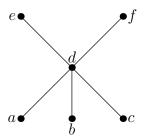
- Lattice theory became an established discipline in its own right during the 1930s and 1940s.
- Garrett Birkhoff published «On the Structure of Abstract Algebras» in 1935, establishing universal algebra as a branch of mathematics.
- Birkhoff used lattice-theoretic ideas in his paper. In 1940 he published a book on lattice theory.
- Øystein Ore referred to lattices as «structures» and led a short-lived program during the 1930s where lattices were hailed as the single unifying concept for all of mathematics.
- During this period Saunders Mac Lane studied algebra under Ore's advisement. Mac Lane went on to become one of the founders of category theory.

Posets

- Although we defined lattices as algebras previously, it turns out that orderings on sets are going to be very relevant here.
- We say that a binary relation θ on a set A is antisymmetric when for all $x,y\in A$ we have that x θ y and y θ x implies that x=y.
- A partial ordering of a set P is a binary relation on P which is reflexive, transitive, and antisymmetric.
- We usually denote a partial order by the symbol \leq .
- We refer to $\mathbf{P} \coloneqq (P, \leq)$ as a *poset*.
- For example, (\mathbb{N}, \leq) is a poset with the usual definition of \leq for natural numbers.

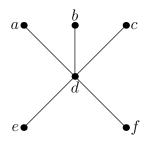
Posets

- In order to depict a poset we may use a Hasse diagram, which is a graph whose vertices correspond to the elements of the poset and whose edges indicate the ordering.
- The Hasse diagram of the poset on $\{a,b,c,d,e,f\}$ with a < d < e, b < d < f, and c < d is depicted below.



Posets

- Given a poset $\mathbf{P} \coloneqq (P, \sigma)$ we define the *dual* of \mathbf{P} to be $\mathbf{P}^{\partial} \coloneqq (P, \sigma^{\smile})$.
- \blacksquare Note that the Hasse diagram of \mathbf{P}^{∂} is just the Hasse diagram of \mathbf{P} upside-down.



Lattices

- Given a poset $\mathbf{P} := (P, \leq)$ we denote by $a \ll X$ the statement «for all $x \in X$ we have that $a \leq x$ ».
- In the case that $a \ll X$ we say that a is a *lower bound* for X.
- We say that a lower bound a of X is the greatest lower bound (or infimum) of X when for all $p \in P$ we have that if $p \ll X$ then $p \leq a$.
- We can similarly define upper bound and least upper bound (or supremum).

Lattices

We are finally ready to define a lattice (again).

Definition (Lattice)

A *lattice* is a poset $\mathbf{P}\coloneqq(P,\leq)$ in which every pair of elements of P has a supremum and infimum.

Of course we already have a definition of a lattice as an algebra.

Definition (Lattice)

A *lattice* is an algebra $\mathbf{L} := (L, \wedge, \vee)$ such that (L, \wedge) and (L, \vee) are semilattices and the identities

$$x \wedge (x \vee y) \approx x \text{ and } x \vee (x \wedge y) \approx x$$

hold.

Lattices

- It only makes sense to have these two different definitions of a lattice if they're somehow equivalent.
- Given a lattice (poset) (P, \leq) we can define an algebra (P, \wedge, \vee) where

$$x \wedge y \coloneqq \inf(\{x,y\}) \text{ and } x \vee y \coloneqq \sup(\{x,y\}).$$

- This algebra (P, \land, \lor) is always a lattice (algebra).
- There is also an inverse mapping taking each lattice (algebra) to a lattice (poset).
- Given a lattice (algebra) (P, \land, \lor) we can define a poset (P, \le) where we set $x \le y$ when $x = x \land y$.
- This poset (P, \leq) is always a lattice (poset).

Isotone maps and homomorphisms

We consider those functions which respect poset orderings.

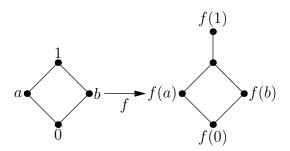
Definition (Isotone map)

Given posets $\mathbf{P} \coloneqq (P, \leq^{\mathbf{P}})$ and $\mathbf{Q} \coloneqq (Q, \leq^{\mathbf{Q}})$ we say that a function $f \colon P \to Q$ is *isotone* when for all $x, y \in P$ we have that $x \leq^{\mathbf{P}} y$ implies $f(x) \leq^{\mathbf{Q}} f(y)$.

We write $f: \mathbf{P} \to \mathbf{Q}$ in order to indicate that $f: P \to Q$ is an isotone map from \mathbf{P} to \mathbf{Q} .

Isotone maps and homomorphisms

- When \mathbf{P} and \mathbf{Q} are lattices and $f \colon P \to Q$ is a homomorphism (of algebras) we have that f is isotone.
- Not all isotone maps between lattices are homomorphisms.



Isotone maps and homomorphisms

Proposition

Given a bijective, isotone map $f \colon \mathbf{P} \to \mathbf{Q}$ we have that if $f^{-1} \colon Q \to P$ is isotone then f is a lattice isomorphism.

Proof.

We show that f is a homomorphism, so we must show that for any $a,b\in P$ we have $f(a\wedge^\mathbf{P}b)=f(a)\wedge^\mathbf{Q}f(b)$. Take $c:=a\wedge^\mathbf{P}b$. We know that $c\ll^\mathbf{P}\{a,b\}$ so by isotonicity we have that $f(c)\ll^\mathbf{Q}\{f(a),f(b)\}$. It remains to show that f(c) is the greatest among these lower bounds. Given $x\ll^\mathbf{Q}\{f(a),f(b)\}$ we use that f^{-1} is isotone to see that $f^{-1}(x)\ll^\mathbf{P}\{a,b\}$, which implies that $f^{-1}(x)\leq^\mathbf{P}c$ and hence $x\leq^\mathbf{Q}f(c)$. An identical argument works for \vee .

Isotone maps and continuous maps

- We can associate to any poset a topology in the following way.
- Given a poset $\mathbf{P} \coloneqq (P, \leq)$ we say that $D \subset P$ is a *downset* of \mathbf{P} when for each $x \in D$ and each $y \in P$ we have that $y \leq x$ implies that $y \in D$.
- We denote by $Dn(\mathbf{P})$ the collection of all downsets of \mathbf{P} .
- We have that $Dn(\mathbf{P})$ is actually a topology on P.
- Moreover, a function $f \colon P \to Q$ is an isotone map from $\mathbf P$ to $\mathbf Q$ if and only if f is a continuous map from $(P, \operatorname{Dn}(\mathbf P))$ to $(Q, \operatorname{Dn}(\mathbf Q))$.
- In particular, this means that each homomorphism of lattices is a continuous map between the corresponding topological spaces.

The lattice of open sets

- We have just seen how to make spaces from posets (including lattices), but we can also produce lattices from topological spaces.
- Given a topological space $\mathbf{T} \coloneqq (T,\tau)$ the algebra (τ,\cap,\cup) is a lattice.
- This is one of the observations that leads to the study of locale theory (or, more humorously, pointless topology).

Lattices in probability

- Lattices also appear in measure-theoretic probability theory.
- Recall that a σ -algebra on a set X is a $\Sigma \subset \operatorname{Sb}(X)$ which contains X, is closed under complementation, and is closed under taking countable unions.
- It follows from De Morgan's laws for sets that any σ -algebra is also closed under countable intersections.
- Given a σ -algebra Σ we find that (Σ, \cap, \cup) is a lattice.
- Actually, (Σ, \cap, \cup) is a special kind of lattice. It is bounded, complemented, and countably complete. We'll discuss these properties of lattices on subsequent days.