Universal algebra and lattice theory Week 3 The distributive and modular laws

Charlotte Aten

2020 September 17

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

- Definition of distributive and modular lattices
- Relationship between distributivity and modularity

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Dualizing distributivity
- Two very special nondistributive lattices
- Dedekind's result on modularity
- Birkhoff's result on distributivity
- An aside about graph theory

Today we introduce two of the main algebraic properties of interest for lattices.

Definition (Distributive lattice)

We say that a lattice ${\bf L}$ is distributive when ${\bf L}$ satisfies

 $x \wedge (y \lor z) \approx (x \wedge y) \lor (x \wedge z).$

We actually always have

$$x \wedge (y \vee z) \geq (x \wedge y) \vee (x \wedge z)$$

so if we want to check that a lattice is distributive it suffices to show that

$$x \land (y \lor z) \le (x \land y) \lor (x \land z).$$

Today we introduce two of the main algebraic properties of interest for lattices.

Definition (Modular lattice)

We say that a lattice \mathbf{L} is *modular* when for all $y \in L$ we have that

 $z \leq x$ implies $x \wedge (y \vee z) = (x \wedge y) \vee z$.

We actually always have that $z \leq x$ implies

$$x \land (y \lor z) \ge (x \land y) \lor z$$

so if we want to check that a lattice is modular it suffices to show that $z \leq x$ implies

$$x \wedge (y \lor z) \leq (x \wedge y) \lor z.$$

Proposition

Every distributive lattice is modular.

Proof.

Suppose that ${\bf L}$ is a lattice with $x,y,z\in L$ such that $z\leq x.$ We have that

$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$

by distributivity. Since $z \leq x$ we have that $x \wedge z = z$ so

$$x \wedge (y \vee z) = (x \wedge y) \vee z,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

as desired.

A distributive lattice is one for which \land distributes over \lor . What can we say about lattices for which \lor distributes over \land ?

Dualizing distributivity

Proposition

A lattice \mathbf{L} is distributive if and only if \mathbf{L} satisfies

$$x \lor (y \land z) \approx (x \lor y) \land (x \lor z).$$

Proof.

Suppose that L is distributive. Given $x,y,z\in L$ define $a\coloneqq x\vee y.$ Observe that

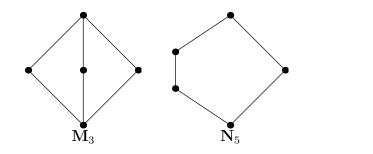
$$\begin{aligned} (x \lor y) \land (x \lor z) &= a \land (x \lor z) = (a \land x) \lor (a \land z) \\ &= x \lor ((x \lor y) \land z) = x \lor (x \land z) \lor (y \land z) \\ &= x \lor (y \land z). \end{aligned}$$

・ 日 ・ ・ 雪 ・ ・ 目 ・ ・ 日 ・

The argument in the other direction is identical.

Two very special nondistributive lattices

- You should examine all nonempty lattices of order at most 4.
- There are 5 such lattices, up to isomorphism.
- They are all distributive.
- There are exactly two nondistributive lattices of order 5, which we call M₃ and N₅.
- We have that \mathbf{M}_3 is modular and \mathbf{N}_5 is not.



- 日本 本語 本 本 田 本 王 本 田 本

Theorem (Dedekind (1900))

Take L to be a lattice. The following are equivalent.

- (a) L is modular
- (b) L satisfies $((x \land z) \lor y) \land z \approx (x \land z) \lor (y \land z)$

(c) L has no sublattice isomorphic to N_5

Theorem (Dedekind (1900))

Take L to be a lattice. The following are equivalent.

(a) L is modular

(b) L satisfies $((x \land z) \lor y) \land z \approx (x \land z) \lor (y \land z)$

(c) \mathbf{L} has no sublattice isomorphic to \mathbf{N}_5

- We show that (a) implies (b).
- Take $x, y, z \in L$ and define $c \coloneqq x \wedge z$.
- Since $c \le z$ we have by modularity that $z \land (y \lor c) = (z \land y) \lor c$.
- This shows that $z \land (y \lor (x \land z)) = (z \land y) \lor (x \land z).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem (Dedekind (1900))

Take L to be a lattice. The following are equivalent.

- (a) L is modular
- (b) L satisfies $((x \land z) \lor y) \land z \approx (x \land z) \lor (y \land z)$
- (c) \mathbf{L} has no sublattice isomorphic to \mathbf{N}_5
 - We show that (b) implies (c) by proving the contrapositive.
 - Suppose that L has a sublattice isomorphic to N_5 labeled so that 0 < x < z < 1 and 0 < y < 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• One can verify that this violates the identity in (b).

Dedekind's result on modularity

Theorem (Dedekind (1900))

Take L to be a lattice. The following are equivalent.

- (a) L is modular
- (b) L satisfies $((x \land z) \lor y) \land z \approx (x \land z) \lor (y \land z)$
- (c) \mathbf{L} has no sublattice isomorphic to \mathbf{N}_5
 - We show that (c) implies (a) by proving the contrapositive.
 - Suppose that L is not modular. We must show that L has a sublattice isomorphic to N₅.
 - By assumption there are elements $a, b, c \in L$ with $a \ge c$ so that $a \land (b \lor c) > (a \land b) \lor c$.
 - The desired sublattice has

$$a \wedge b < c \lor (a \wedge b) < a \land (b \lor c) < b \lor c$$

and $a \wedge b < b \vee c$.

Dedekind's result on modularity

Theorem (Dedekind (1900))

Take L to be a lattice. The following are equivalent.

- (a) L is modular
- (b) L satisfies $((x \land z) \lor y) \land z \approx (x \land z) \lor (y \land z)$

(c) \mathbf{L} has no sublattice isomorphic to \mathbf{N}_5

- Even though modularity was not originally defined by an identity, part (b) shows that it could have been.
- This means that homomorphic images, sublattices, and products of modular lattices are all modular, as well.
- Since L contains a copy of N₅ if and only if L^{∂} does, we have that L is modular if and only if L^{∂} is.
- We refrain from giving an example here, but not all identities which hold in L necessarily hold in L[∂], so modularity is special in this regard.

Theorem (Birkhoff)

Take L to be a lattice. The following are equivalent.

(a) L is distributive

(b) L satisfies $(x \land y) \lor (x \land z) \lor (y \land z) \approx (x \lor y) \land (x \lor z) \land (y \lor z)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

(c) L has no sublattice isomorphic to N_5 or M_3

- The left- and right-hand-sides of the identity in (b) are particularly noteworthy.
- Define $m_1(x, y, z) \coloneqq (x \land y) \lor (x \land z) \lor (y \land z)$ and $m_2(x, y, z) \coloneqq (x \lor y) \land (x \lor z) \land (y \lor z)$.
- For $i \in \{1,2\}$ we have in any lattice that

 $m_i(x, x, y) \approx m_i(x, y, x) \approx m_i(y, x, x) \approx x.$

A term like m₁ or m₂ which satisfies the above identities is called a majority term.

An aside about graph theory

Theorem (Kuratowski)

A finite graph is planar if and only if it does not contain a subdivision of either K_5 or $K_{3,3}$ as a subgraph.

