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Universal algebra and lattice theory
Week 3

The distributive and modular laws

Charlotte Aten

2020 September 17
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Today’s topics

Definition of distributive and modular lattices
Relationship between distributivity and modularity
Dualizing distributivity
Two very special nondistributive lattices
Dedekind’s result on modularity
Birkhoff’s result on distributivity
An aside about graph theory
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Definition of distributive and modular lattices

Today we introduce two of the main algebraic properties of interest
for lattices.
Definition (Distributive lattice)
We say that a lattice L is distributive when L satisfies

x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z).

We actually always have

x ∧ (y ∨ z) ≥ (x ∧ y) ∨ (x ∧ z)

so if we want to check that a lattice is distributive it suffices to
show that

x ∧ (y ∨ z) ≤ (x ∧ y) ∨ (x ∧ z).
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Definition of distributive and modular lattices

Today we introduce two of the main algebraic properties of interest
for lattices.
Definition (Modular lattice)
We say that a lattice L is modular when for all y ∈ L we have that

z ≤ x implies x ∧ (y ∨ z) = (x ∧ y) ∨ z.

We actually always have that z ≤ x implies

x ∧ (y ∨ z) ≥ (x ∧ y) ∨ z

so if we want to check that a lattice is modular it suffices to show
that z ≤ x implies

x ∧ (y ∨ z) ≤ (x ∧ y) ∨ z.
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Relationship between distributivity and modularity

Proposition
Every distributive lattice is modular.

Proof.
Suppose that L is a lattice with x, y, z ∈ L such that z ≤ x. We
have that

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

by distributivity. Since z ≤ x we have that x ∧ z = z so

x ∧ (y ∨ z) = (x ∧ y) ∨ z,

as desired.
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Dualizing distributivity

A distributive lattice is one for which ∧ distributes over ∨. What
can we say about lattices for which ∨ distributes over ∧?
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Dualizing distributivity

Proposition
A lattice L is distributive if and only if L satisfies

x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z).

Proof.
Suppose that L is distributive. Given x, y, z ∈ L define a := x ∨ y.
Observe that

(x ∨ y) ∧ (x ∨ z) = a ∧ (x ∨ z) = (a ∧ x) ∨ (a ∧ z)
= x ∨ ((x ∨ y) ∧ z) = x ∨ (x ∧ z) ∨ (y ∧ z)
= x ∨ (y ∧ z).

The argument in the other direction is identical.
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Two very special nondistributive lattices

You should examine all nonempty lattices of order at most 4.
There are 5 such lattices, up to isomorphism.
They are all distributive.
There are exactly two nondistributive lattices of order 5,
which we call M3 and N5.
We have that M3 is modular and N5 is not.

M3 N5
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Dedekind’s result on modularity

Theorem (Dedekind (1900))
Take L to be a lattice. The following are equivalent.
(a) L is modular
(b) L satisfies ((x ∧ z) ∨ y) ∧ z ≈ (x ∧ z) ∨ (y ∧ z)
(c) L has no sublattice isomorphic to N5
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Dedekind’s result on modularity

Theorem (Dedekind (1900))
Take L to be a lattice. The following are equivalent.
(a) L is modular
(b) L satisfies ((x ∧ z) ∨ y) ∧ z ≈ (x ∧ z) ∨ (y ∧ z)
(c) L has no sublattice isomorphic to N5

We show that (a) implies (b).
Take x, y, z ∈ L and define c := x ∧ z.
Since c ≤ z we have by modularity that
z ∧ (y ∨ c) = (z ∧ y) ∨ c.
This shows that z ∧ (y ∨ (x ∧ z)) = (z ∧ y) ∨ (x ∧ z).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dedekind’s result on modularity

Theorem (Dedekind (1900))
Take L to be a lattice. The following are equivalent.
(a) L is modular
(b) L satisfies ((x ∧ z) ∨ y) ∧ z ≈ (x ∧ z) ∨ (y ∧ z)
(c) L has no sublattice isomorphic to N5

We show that (b) implies (c) by proving the contrapositive.
Suppose that L has a sublattice isomorphic to N5 labeled so
that 0 < x < z < 1 and 0 < y < 1.
One can verify that this violates the identity in (b).
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Dedekind’s result on modularity

Theorem (Dedekind (1900))
Take L to be a lattice. The following are equivalent.
(a) L is modular
(b) L satisfies ((x ∧ z) ∨ y) ∧ z ≈ (x ∧ z) ∨ (y ∧ z)
(c) L has no sublattice isomorphic to N5

We show that (c) implies (a) by proving the contrapositive.
Suppose that L is not modular. We must show that L has a
sublattice isomorphic to N5.
By assumption there are elements a, b, c ∈ L with a ≥ c so
that a ∧ (b ∨ c) > (a ∧ b) ∨ c.
The desired sublattice has

a ∧ b < c ∨ (a ∧ b) < a ∧ (b ∨ c) < b ∨ c
and a ∧ b < b < b ∨ c.
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Dedekind’s result on modularity

Theorem (Dedekind (1900))
Take L to be a lattice. The following are equivalent.
(a) L is modular
(b) L satisfies ((x ∧ z) ∨ y) ∧ z ≈ (x ∧ z) ∨ (y ∧ z)
(c) L has no sublattice isomorphic to N5

Even though modularity was not originally defined by an
identity, part (b) shows that it could have been.
This means that homomorphic images, sublattices, and
products of modular lattices are all modular, as well.
Since L contains a copy of N5 if and only if L∂ does, we have
that L is modular if and only if L∂ is.
We refrain from giving an example here, but not all identities
which hold in L necessarily hold in L∂ , so modularity is
special in this regard.
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Birkhoff’s result on distributivity

Theorem (Birkhoff)
Take L to be a lattice. The following are equivalent.
(a) L is distributive
(b) L satisfies

(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z)
(c) L has no sublattice isomorphic to N5 or M3
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Birkhoff’s result on distributivity

The left- and right-hand-sides of the identity in (b) are
particularly noteworthy.
Define m1(x, y, z) := (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) and
m2(x, y, z) := (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).
For i ∈ {1, 2} we have in any lattice that

mi(x, x, y) ≈ mi(x, y, x) ≈ mi(y, x, x) ≈ x.

A term like m1 or m2 which satisfies the above identities is
called a majority term.
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An aside about graph theory

Theorem (Kuratowski)
A finite graph is planar if and only if it does not contain a
subdivision of either K5 or K3,3 as a subgraph.

K3,3 K5

M3 N5


