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Today’s topics

Motivation
Definition of a complete lattice
Examples of complete lattices
Subuniverse and congruence lattices
Complete sublattices
Congruence lattices of groups
Congruence lattices of lattices
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Motivation

Consider the lattice L := (Sb(N),∩,∪).
Given any X ⊂ Sb(N) we have that

∪
X =

∪
X∈X X

belongs to Sb(N).
Moreover, sup(X ) =

∪
X .

We think of
∪

X as the «infinite join» of the members of X .
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Motivation

Instead consider the lattice L := (Sbω(N),∩,∪) where
Sbω(N) consists of all finite subsets of N.
Let [n] := {1, 2, . . . ,n} and take X := { [n] | n ∈ N }.
The collection X has no upper bound in L, much less a least
upper bound.
Thus, sup(X ) does not exist in L.
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Definition of a complete lattice

Definition (Complete lattice)
A lattice L is said to be complete when for every X ⊂ L we have
that both sup(X) and inf(X) exist.

We define
∨

X := sup(X) and
∧

X := inf(X).
When X := {xi}i∈I we define

∨
i∈I xi := sup(X) and∧

i∈I xi := inf(X).
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Examples of complete lattices

The lattice (Sb(N),∩,∪) is complete.
The lattice (Sbω(N),∩,∪) is not complete.
The lattice (Sbω(N) ∪ {N} ,∩,∪) is complete.
The lattice (N,min,max) is not complete.
The lattice (N ∪ {∞} ,min,max) is complete.
Note that (R,min,max) is not complete, contrary to the
language used in analysis and topology.
The lattice (R ∪ {−∞,∞} ,∩,∪) is complete, however.
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Subuniverse and congruence lattices

At long last we will make lattices out of the subuniverses and
congruences of algebras.
In order to do this, we use the following result.

Proposition
If P is a poset in which inf(X) exists for each X ⊂ P then P is a
complete lattice.
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Subuniverse and congruence lattices

Proposition
If P is a poset in which inf(X) exists for each X ⊂ P then P is a
complete lattice.

Proof.
We already have that P has arbitrary infima so it remains to show
that P has arbitrary suprema. Given X ⊂ P we must produce
sup(X) within P. Take

Y := { y ∈ P | y ≫ X }

and define a := inf(Y ). Given any x ∈ X we have that x ≤ y for
each y ∈ Y , so x ≪ Y . Since a is the greatest among the lower
bounds of Y we have x ≤ a. It follows that a ∈ Y and is the least
of all upper bounds for X .
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Subuniverse and congruence lattices

The following corollary tells us that the subuniverses and
congruences of any algebra form complete lattices.

Corollary
Given an algebra A we have that Sub(A) := (Sub(A),⊂) and
Con(A) := (Con(A),⊂) are complete lattices.

Proof.
We already know that Sub(A) and Con(A) are closed under
taking arbitrary intersections, which give our arbitrary infima.
There is one point I swept under the rug in a previous talk though:
How do we compute

∩
∅?
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Subuniverse and congruence lattices

Corollary
Given an algebra A we have that Sub(A) := (Sub(A),⊂) and
Con(A) := (Con(A),⊂) are complete lattices.

Proof.
If we’re being really careful then when we compute an intersection∩

X we should always specify that X ⊂ Sb(A) for some set A.
We then define∩

X := { a ∈ A | (∀X ∈ X )(a ∈ X) } ,

which yields
∩
∅ = A.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Subuniverse and congruence lattices

Recall that Ore had a program during the 1930s where lattices
became the central objects of study in all of mathematics.
One of the shortcomings of this approach is that it was not
clear how to extract all properties of an object from a
corresponding lattice.
For example, consider the cyclic groups C2 and C3.
We have that

Sub(C2) ∼= Sub(C3) ∼= Con(C2) ∼= Con(C3) ∼= 2.
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Subuniverse and congruence lattices

We have that

Sub(C2) ∼= Sub(C3) ∼= Con(C2) ∼= Con(C3) ∼= 2.

In the 1920s Ada Rottlaender studied the problem of
distinguishing groups by their subgroup lattices using only
those isomorphisms which respect conjugation.
She found that even under this stricter condition there were
still nonisomorphic pairs of groups with isomorphic subgroup
lattices.
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Complete sublattices

We have another corollary of our earlier proposition.

Corollary
Given a set A we have that Eq(A) := (Eq(A),⊂) is a complete
lattice.

We know that Eq(A) supports taking arbitrary joins, but how do
we actually compute them? Arbitrary meets are easy because in
Eq(A) we have that

∧
Θ =

∩
Θ for any Θ ⊂ Eq(A).
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Complete sublattices

Proposition
Given a set A and Θ ⊂ Eq(A) we have in Eq(A) that∨

Θ = 0A ∪
∪

{ θ1 ◦ θ2 ◦ · · · ◦ θk | k ∈ N and (∀i ≤ k)(θi ∈ Θ) } .

Proof sketch: Let the left- and right-hand-sides be α and β,
respectively. Argue that β is an equivalence relation similarly to
how we gave an explicit construction of CgA(ν) previously. It
follows that α ⊂ β. To show that β ⊂ α note that given
θ1, . . . , θk ∈ Θ we have that θ1 ◦ · · · ◦ θk ⊂ α ◦ · · · ◦ α = α.
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Complete sublattices

Definition (Complete sublattice)
Give a complete lattice L and a sublattice M of L we say that M
is a complete sublattice of L when for each X ⊂ M we have that∨

X and
∧

X (as computed in L) are elements of M .

It is possible for complete lattices to have sublattices which
are incomplete and vice versa.
Consider that (Sbω(N) ∪ {N} ,⊂) is a complete lattice which
is a sublattice of the complete lattice (Sb(N),⊂) but it is not
a complete sublattice.
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Complete sublattices

We have some standard examples of complete sublattices available
to us.
Theorem
Given an algebra A we have that Con(A) is a complete sublattice
of Eq(A). Moreover, if B is a reduct of A then Con(A) is a
complete sublattice of Con(B).
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Congruence lattices of groups

We finish today by giving two classic results on the congruence
lattices of groups and of lattices.

Theorem (Dedekind, 1900)
The congruence lattice of a group is modular.

Proof.
Note that if α and β are group congruences and (x, y) ∈ α ◦ β
then there is some z so that x α z β y. It follows that

x = (xz−1z) β (xz−1y) α (zz−1y) = y

so (x, y) ∈ β ◦ α. We find that α ◦ β = β ◦ α. In this situation we
say that α and β permute and have that α ∨ β = α ◦ β.
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Congruence lattices of groups

We finish today by giving two classic results on the congruence
lattices of groups and of lattices.

Theorem (Dedekind, 1900)
The congruence lattice of a group is modular.

Proof.
Suppose that α, β, and γ are congruences with γ ⊂ α. We must
show the nontrivial containment

α ∧ (β ∨ γ) ⊂ (α ∧ β) ∨ γ.

Given (x, y) ∈ α ∧ (β ∨ γ) we have some z so that x β z γ y and
since γ ⊂ α we have that z α y α x. Thus, x (α ∧ β) z γ y.
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Congruence lattices of lattices

We finish today by giving two classic results on the congruence
lattices of groups and of lattices.

Theorem (Funayama and Nakayama, 1942)
The congruence lattice of a lattice is distributive.

The congruences of a lattice don’t generally commute so this
argument takes a little more work. The majority terms we
discussed previously when looking at distributivity are very
helpful here.
Recall that every distributive lattice is modular, so the
congruence lattices of lattices are more constrained than the
congruence lattices of groups.


