Universal algebra and lattice theory Lecture 7 Complete lattices

Charlotte Aten

2020 December 23

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Today's topics

- Motivation
- Definition of a complete lattice
- Examples of complete lattices
- Subuniverse and congruence lattices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Complete sublattices
- Congruence lattices of groups
- Congruence lattices of lattices

- Consider the lattice $\mathbf{L} \coloneqq (\mathrm{Sb}(\mathbb{N}), \cap, \cup).$
- Given any $\mathscr{X} \subset \mathrm{Sb}(\mathbb{N})$ we have that $\bigcup \mathscr{X} = \bigcup_{X \in \mathscr{X}} X$ belongs to $\mathrm{Sb}(\mathbb{N})$.
- Moreover, $\sup(\mathscr{X}) = \bigcup \mathscr{X}$.
- We think of $\bigcup \mathscr{X}$ as the «infinite join» of the members of $\mathscr{X}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Instead consider the lattice $\mathbf{L} := (Sb_{\omega}(\mathbb{N}), \cap, \cup)$ where $Sb_{\omega}(\mathbb{N})$ consists of all finite subsets of \mathbb{N} .
- Let $[n] \coloneqq \{1, 2, \dots, n\}$ and take $\mathscr{X} \coloneqq \{ [n] \mid n \in \mathbb{N} \}.$
- The collection X has no upper bound in L, much less a least upper bound.

 \blacksquare Thus, $\sup(\mathscr{X})$ does not exist in $\mathbf{L}.$

Definition (Complete lattice)

A lattice **L** is said to be *complete* when for every $X \subset L$ we have that both $\sup(X)$ and $\inf(X)$ exist.

- We define $\bigvee X \coloneqq \sup(X)$ and $\bigwedge X \coloneqq \inf(X)$.
- When $X := \{x_i\}_{i \in I}$ we define $\bigvee_{i \in I} x_i := \sup(X)$ and $\bigwedge_{i \in I} x_i := \inf(X)$.

- The lattice $(Sb(\mathbb{N}), \cap, \cup)$ is complete.
- The lattice $(Sb_{\omega}(\mathbb{N}), \cap, \cup)$ is not complete.
- The lattice $(Sb_{\omega}(\mathbb{N}) \cup \{\mathbb{N}\}, \cap, \cup)$ is complete.
- The lattice (\mathbb{N}, \min, \max) is not complete.
- The lattice $(\mathbb{N} \cup \{\infty\}, \min, \max)$ is complete.
- Note that (ℝ, min, max) is not complete, contrary to the language used in analysis and topology.
- The lattice $(\mathbb{R} \cup \{-\infty, \infty\}, \cap, \cup)$ is complete, however.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- At long last we will make lattices out of the subuniverses and congruences of algebras.
- In order to do this, we use the following result.

Proposition

If \mathbf{P} is a poset in which $\inf(X)$ exists for each $X \subset P$ then \mathbf{P} is a complete lattice.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Subuniverse and congruence lattices

Proposition

If **P** is a poset in which inf(X) exists for each $X \subset P$ then **P** is a complete lattice.

Proof.

We already have that \mathbf{P} has arbitrary infima so it remains to show that \mathbf{P} has arbitrary suprema. Given $X \subset P$ we must produce $\sup(X)$ within \mathbf{P} . Take

$$Y \coloneqq \{ y \in P \mid y \gg X \}$$

and define $a := \inf(Y)$. Given any $x \in X$ we have that $x \leq y$ for each $y \in Y$, so $x \ll Y$. Since a is the greatest among the lower bounds of Y we have $x \leq a$. It follows that $a \in Y$ and is the least of all upper bounds for X. The following corollary tells us that the subuniverses and congruences of any algebra form complete lattices.

Corollary

Given an algebra A we have that $\mathbf{Sub}(\mathbf{A}) \coloneqq (\mathrm{Sub}(\mathbf{A}), \subset)$ and $\mathbf{Con}(\mathbf{A}) \coloneqq (\mathrm{Con}(\mathbf{A}), \subset)$ are complete lattices.

Proof.

We already know that $\operatorname{Sub}(\mathbf{A})$ and $\operatorname{Con}(\mathbf{A})$ are closed under taking arbitrary intersections, which give our arbitrary infima. There is one point I swept under the rug in a previous talk though: How do we compute $\bigcap \varnothing$?

Corollary

Given an algebra A we have that $\mathbf{Sub}(\mathbf{A}) \coloneqq (\mathrm{Sub}(\mathbf{A}), \subset)$ and $\mathbf{Con}(\mathbf{A}) \coloneqq (\mathrm{Con}(\mathbf{A}), \subset)$ are complete lattices.

Proof.

If we're being really careful then when we compute an intersection $\bigcap \mathscr{X}$ we should always specify that $\mathscr{X} \subset \mathrm{Sb}(A)$ for some set A. We then define

$$\bigcap \mathscr{X} \coloneqq \{ a \in A \mid (\forall X \in \mathscr{X}) (a \in X) \},\$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

which yields $\bigcap \emptyset = A$.

- Recall that Ore had a program during the 1930s where lattices became the central objects of study in all of mathematics.
- One of the shortcomings of this approach is that it was not clear how to extract all properties of an object from a corresponding lattice.
- For example, consider the cyclic groups C_2 and C_3 .
- We have that

$$\operatorname{Sub}(\operatorname{\mathbf{C}}_2)\cong\operatorname{Sub}(\operatorname{\mathbf{C}}_3)\cong\operatorname{\mathbf{Con}}(\operatorname{\mathbf{C}}_2)\cong\operatorname{\mathbf{Con}}(\operatorname{\mathbf{C}}_3)\cong\mathbf{2}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We have that

 $\operatorname{Sub}(\operatorname{\mathbf{C}}_2)\cong\operatorname{Sub}(\operatorname{\mathbf{C}}_3)\cong\operatorname{\mathbf{Con}}(\operatorname{\mathbf{C}}_2)\cong\operatorname{\mathbf{Con}}(\operatorname{\mathbf{C}}_3)\cong\mathbf{2}.$

- In the 1920s Ada Rottlaender studied the problem of distinguishing groups by their subgroup lattices using only those isomorphisms which respect conjugation.
- She found that even under this stricter condition there were still nonisomorphic pairs of groups with isomorphic subgroup lattices.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We have another corollary of our earlier proposition.

Corollary

Given a set A we have that $\mathbf{Eq}(A) \coloneqq (\mathrm{Eq}(A), \subset)$ is a complete lattice.

We know that $\mathbf{Eq}(A)$ supports taking arbitrary joins, but how do we actually compute them? Arbitrary meets are easy because in $\mathbf{Eq}(A)$ we have that $\bigwedge \Theta = \bigcap \Theta$ for any $\Theta \subset \mathrm{Eq}(A)$.

Proposition

Given a set A and $\Theta \subset Eq(A)$ we have in Eq(A) that

$$\bigvee \Theta = 0_A \cup \bigcup \left\{ \, \theta_1 \circ \theta_2 \circ \cdots \circ \theta_k \mid k \in \mathbb{N} \text{ and } (\forall i \leq k) (\theta_i \in \Theta) \, \right\}.$$

Proof sketch: Let the left- and right-hand-sides be α and β , respectively. Argue that β is an equivalence relation similarly to how we gave an explicit construction of $Cg^{\mathbf{A}}(\nu)$ previously. It follows that $\alpha \subset \beta$. To show that $\beta \subset \alpha$ note that given $\theta_1, \ldots, \theta_k \in \Theta$ we have that $\theta_1 \circ \cdots \circ \theta_k \subset \alpha \circ \cdots \circ \alpha = \alpha$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Definition (Complete sublattice)

Give a complete lattice \mathbf{L} and a sublattice \mathbf{M} of \mathbf{L} we say that \mathbf{M} is a *complete sublattice* of \mathbf{L} when for each $X \subset M$ we have that $\bigvee X$ and $\bigwedge X$ (as computed in \mathbf{L}) are elements of M.

- It is possible for complete lattices to have sublattices which are incomplete and vice versa.
- Consider that $(Sb_{\omega}(\mathbb{N}) \cup \{\mathbb{N}\}, \subset)$ is a complete lattice which is a sublattice of the complete lattice $(Sb(\mathbb{N}), \subset)$ but it is not a complete sublattice.

We have some standard examples of complete sublattices available to us.

Theorem

Given an algebra \mathbf{A} we have that $\mathbf{Con}(\mathbf{A})$ is a complete sublattice of $\mathbf{Eq}(A)$. Moreover, if \mathbf{B} is a reduct of \mathbf{A} then $\mathbf{Con}(\mathbf{A})$ is a complete sublattice of $\mathbf{Con}(\mathbf{B})$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We finish today by giving two classic results on the congruence lattices of groups and of lattices.

Theorem (Dedekind, 1900)

The congruence lattice of a group is modular.

Proof.

Note that if α and β are group congruences and $(x, y) \in \alpha \circ \beta$ then there is some z so that $x \alpha z \beta y$. It follows that

$$x = (xz^{-1}z) \beta (xz^{-1}y) \alpha (zz^{-1}y) = y$$

so $(x, y) \in \beta \circ \alpha$. We find that $\alpha \circ \beta = \beta \circ \alpha$. In this situation we say that α and β *permute* and have that $\alpha \lor \beta = \alpha \circ \beta$.

We finish today by giving two classic results on the congruence lattices of groups and of lattices.

Theorem (Dedekind, 1900)

The congruence lattice of a group is modular.

Proof.

Suppose that α , β , and γ are congruences with $\gamma \subset \alpha$. We must show the nontrivial containment

 $\alpha \wedge (\beta \vee \gamma) \subset (\alpha \wedge \beta) \vee \gamma.$

Given $(x, y) \in \alpha \land (\beta \lor \gamma)$ we have some z so that $x \beta z \gamma y$ and since $\gamma \subset \alpha$ we have that $z \alpha y \alpha x$. Thus, $x (\alpha \land \beta) z \gamma y$.

We finish today by giving two classic results on the congruence lattices of groups and of lattices.

Theorem (Funayama and Nakayama, 1942)

The congruence lattice of a lattice is distributive.

- The congruences of a lattice don't generally commute so this argument takes a little more work. The majority terms we discussed previously when looking at distributivity are very helpful here.
- Recall that every distributive lattice is modular, so the congruence lattices of lattices are more constrained than the congruence lattices of groups.