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Orientable smooth manifolds are essentially
quasigroups

Charlotte Aten (joint work with Semin Yoo)

University of Rochester

2021 November 7



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction

In the mid-2010s Herman and Pakianathan introduced a
functorial construction of closed surfaces from
noncommutative finite groups.
Semin Yoo and I decided to produce an n-dimensional
generalization.
The two main challenges in doing this were finding an
appropriate analogue of noncommutative groups and in
desingularizing the n-dimensional pseudomanifolds which
arose at the first stage of our construction.
Ultimately we found that every orientable triangulable
manifold could be manufactured in the manner we described.
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Talk outline

Herman and Pakianathan’s construction
Quasigroups
The first functor: Open serenation
The second functor: Serenation
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Herman and Pakianathan’s construction

Consider the quaternion group G of order 8 whose universe is
G := {±1,±i,±j,±k}.
We begin by picking out all the pairs of elements (x, y) ∈ G2

so that xy ̸= yx. We call this collection NCT(G).
We define In(G) to be all the elements of G which are entries
in some pair (x, y) ∈ NCT(G).
Similarly, Out(G) is defined to be all the members of G of the
form f(x, y) where (x, y) ∈ NCT(G).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Herman and Pakianathan’s construction

In this case we have

NCT(G) =

{
(±u,±v)

∣∣∣∣ {u, v} ∈
(
{i, j, k}

2

)}
so

In(G) = {±i,±j,±k}

and
Out(G) = {±i,±j,±k} .

From this data we form a simplicial complex (actually a
2-pseudomanifold) whose facets are of the form

{
x, y, f(x, y)

}
where (x, y) ∈ NCT(G).
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Herman and Pakianathan’s construction

During the talk I drew a part of this complex here:

i

j

−i

−j

k
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Herman and Pakianathan’s construction

The three 4-cycles

(i, j,−i,−j), (i, k,−i,−k), and (j, k,−j,−k).

each carry an octohedron.

i

jk

−i

−j −k
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Herman and Pakianathan’s construction

This simplicial complex, which we call Sim(G) and Herman
and Pakianathan called X(Q8), consists of three 2-spheres,
each pair of which is glued at two points.
Deleting these points to disjointize the spheres and filling the
resulting holes yields the manifold we call Ser(G) and Herman
and Pakianathan called Y(Q8).
In this case Ser(G) is the disjoint union of three 2-spheres.
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Quasigroups

Definition (Quasigroup)
A (binary) quasigroup is a magma A := (A, f:A2 → A) such that if
any two of the variables x, y, and z are fixed the equation

f(x, y) = z

has a unique solution.

That is, a quasigroup is a magma whose Cayley table is a
Latin square, where each entry occurs once in each row and
each column.
All groups are quasigroups, but quasigroups need not have
identities or be associative.
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Quasigroups

The midpoint operation

f(x, y) := 1
2(x + y)

is a quasigroup operation on Rn.
The magma (Z,−) is a quasigroup.
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Quasigroups

Definition (Quasigroup)
A (binary) quasigroup is an algebra A := (A, f, g1, g2) where for all
x1, x2, y ∈ A we have

f(g1(x2, y), x2) = y,

f(x1, g2(x1, y)) = y,

g1(x2, f(x1, x2)) = x1,

and
g2(x1, f(x1, x2)) = x2.

We think of g1(x, y) as the division of y by x in the second
coordinate.
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Quasigroups

The preceding definition shows that the class Quas2 of all
binary quasigroups can be defined by universally-quantified
equations, or identities.
This means that Quas2 is a variety of algebras in the sense of
universal algebra, and hence forms a category Quas2 which is
closed under taking quotients, subalgebras, and products.
Note that Herman and Pakianathan’s construction works with
noncommutative quasigroups just as well as with groups.
We would then like an n-ary version of a quasigroup for our
n-dimensional generalization.
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Quasigroups

Definition (Quasigroup)
An n-quasigroup is an n-magma A := (A, f:An → A) such that if
any n − 1 of the variables x1, . . . , xn, y are fixed the equation

f(x1, . . . , xn) = y

has a unique solution.

That is, an n-quasigroup is an n-magma whose Cayley table is
a Latin n-cube.
All n-ary groups are quasigroups, but quasigroups need not be
associative.
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Quasigroups

Given any group G the n-ary multiplication

f(x1, . . . , xn) := x1 · · · xn

is a quasigroup operation on G.
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Quasigroups

Definition (Quasigroup)
An n-quasigroup is an algebra

A := (A, f, g1, . . . , gn)

where for all x1, . . . , xn, y ∈ A and each i ∈ {1, 2, . . . , n} we have

f(x1, . . . , xi−1, gi(x1, . . . , xi−1, xi+1, . . . , xn, y), xi+1, . . . , xn) = y

and
gi(x1, . . . , xi−1, xi+1, . . . , xn, f(x1, . . . , xn)) ≈ xi.

We think of gi(x1, . . . , xi−1, xi+1, . . . , xn, y) as the division of y
simultaneously by xj in the jth coordinate for each j ̸= i.
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Quasigroups

We say that an n-quasigroup A is commutative when for all
x1, . . . , xn ∈ A and all σ ∈ Permn we have

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

We say that an n-quasigroup A is alternating when for all
x1, . . . , xn ∈ A and all σ ∈ Altn we have

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Our “correct” analogue of the variety of groups will the the
variety AQn of alternating n-ary quasigroups.
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Quasigroups

By general results in universal algebra there are nontrivial
members of AQn for each n, but the easiest examples are
either commuting (take the n-ary multiplication for an abelian
group) or infinite (the free alternating quasigroups, which we
need later but are too much right now).
We tediously found the following example by hand:
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Quasigroups

Take S := (Z/5Z)3 and define h:Z/5Z× Alt3 → PermS by

(h(k, σ))(x1, x2, x3) := (xσ(1) + k, xσ(2) + k, xσ(3) + k).

There are 7 members of Orb(h). One system of orbit
representatives is:

{000, 011, 022, 012, 021, 013, 031} .
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Quasigroups

Let A := Z/5Z and define a ternary operation f:A3 → A so
that

f((h(k, σ))(x1, x2, x3)) = f(x1, x2, x3) + k

and f is defined on the above set of orbit representatives as
follows.

xyz f(x, y, z)
000 0
011 0
022 0
012 3
021 4
013 4
031 2
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Quasigroups

By taking products of A := (A, f) this gives us infinitely many
finite, noncommutative, alternating ternary quasigroups, but
we only have one basic example.
We reached out to Jonathan Smith to see if anyone had
studied the varieties of alternating n-quasigroups before, but it
seemed that no one had.
He did, however, give us an example which we generalized
into an alternating product construction which takes an n-ary
commutative quasigroup and an (n + 1)-ary commutative
quasigroup and yields an n-ary alternating quasigroup which is
typically not commutative.
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The first functor: Open serenation

Our first construction gives a functor

OSern:NCAQn → SMfldn .

We define
Simn:NCAQn → PMfldn

similarly to our previous example for n = 2.
We define NCT(A) to consist of all tuples (a1, . . . , an) ∈ An

such that f(a1, . . . , an) ̸= f(a2, a1, . . . , an).
We define In(A) to consist of all entries in noncommuting
tuples of A and Out(A) to consist of all f(a1, . . . , an) where
(a1, . . . , an) ∈ NCT(A).
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The first functor: Open serenation

We set

Sim(A) := { a | a ∈ In(A) } ∪ { a | a ∈ Out(A) }

and
SimFace(A) :=

∪
a∈NCT(A)

Sb
({

a1, . . . , an, f(a)
})

.

We define

Simn(A) := (Sim(A),SimFace(A)).
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The first functor: Open serenation

We create OSern(A) by taking the open geometric realization
of Simn(A) (basically all but the (n − 2)-skeleton of the open
geometric realization) and then equipping it with a smooth
atlas.
The standard open bipyramid (or just bipyramid) in Rn is

Bipyrn := OCvx

({
(0, . . . , 0),

(
2
n , . . . ,

2
n

)}
∪ {e1, . . . , en}

)
where ei is the ith standard basis vector of Rn.
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The first functor: Open serenation

Given an alternating n-quasigroup A and
a = (a1, . . . , an) ∈ NCT(A) the serene chart of input type for
a is

ϕa: Bipyrn → OSern(A).

We set

ϕa(u1, . . . , un) :=
n∑

i=1
uiai +

(
1 −

n∑
i=1

ui

)
f(a)

when
∑n

i=1 ui ≤ 1.
Otherwise,

ϕa(u1, . . . , un) :=
2
n

n∑
i=1

1 +
n − 2

2 ui −
∑
j ̸=i

uj

 ai+(
−1 +

n∑
i=1

ui

)
f(a′).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The first functor: Open serenation

There are also serene charts of output type, where are defined
similarly.
We set

(OSern(A), τ) := (OGeon ◦Simn)(A).

We then define

OSern(A) := (OSern(A), τ, SerAtn(A))

where
SerAtn(A) :=

∪
a∈NCT(A)

{
ϕa, ϕa

}
.
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The first functor: Open serenation

The incidence graph of the facets of Sim(A) for the ternary
quasigroup A from the previous example is pictured.

012 410

402142

021

013203

123 401 304

341031

124132

314 234

420 340

230243
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The first functor: Open serenation

The 1-skeleton of Sim(A) for the ternary quasigroup A from
the previous example is pictured.

0

1

2
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3
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The first functor: Open serenation

One may verify that OSer(A) is a 3-sphere minus the graph
pictured previously, which is homotopy equivalent to the join
of 21 circles.
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The second functor: Serenation

For any alternating quasigroup A we may equip OSer(A) with
a Riemannian metric in a functorial manner which makes
OSer(A) flat.
We then define a Euclidean metric completion functor

EuCmplt:Riemn → Mfldn

which assigns to a Riemannian manifold (M, g) the
topological manifold consisting of all points in the metric
completion of M which are locally Euclidean.
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The second functor: Serenation

The serenation functor

Sern:NCAQn → Mfldn

is given by

Ser(A) := EuCmplt(OSer(A), g)

where g is the standard metric on OSer(A).
In the previous example of the ternary quasigroup A we find
that Ser3(A) is the 3-sphere.
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The second functor: Serenation

Definition (Serene manifold)
We say that a connected orientable n-manifold M is serene when
there exists some alternating n-quasigroup A such that M is a
component of Ser(A).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The second functor: Serenation

Theorem (A., Yoo (2021))
Every connected orientable triangulable n-manifold is serene.
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The second functor: Serenation

Theorem (A., Yoo (2021))
Every connected orientable triangulable n-manifold is serene.

Consider a triangulation of the given manifold M.
Subdivide each facet in a manner I will draw off to the side.
We have that M is homeomorphic to a corresponding
component of the serenation of a quotient of the free
alternating n-quasigroup whose generators are the vertices of
the subdivided triangulation.
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