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RPS as a Magma

We will view the game of RPS as a magma. We let A := {r, p, s}
and define a binary operation f:A2 → A where f(x, y) is the
winning item among {x, y}.

r p s
r r p r
p p p s
s r s s
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Selection Games

A selection game is a game consisting of a collection of items A,
from which a fixed number of players n each choose one, resulting
in a tuple a ∈ An, following which the round’s winners are those
who chose f(a) for some fixed rule f:An → A. RPS is a selection
game, and we can identify each such game with an n-ary magma
A := (A, f).
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Properties of RPS

The game RPS is
1 conservative,
2 essentially polyadic,
3 strongly fair, and
4 nondegenerate.

These are the properties we want for a multiplayer game, as well.
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Properties of RPS: Conservativity

We say that an operation f:An → A is conservative when for any
a1, . . . , an ∈ A we have that f(a1, . . . , an) ∈ {a1, . . . , an}. We say
that A is conservative when each round has at least one winning
player.
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Properties of RPS: Essential Polyadicity

We say that an operation f:An → A is essentially polyadic when
there exists some g: Sb(A) → A such that for any a1, . . . , an ∈ A we
have f(a1, . . . , an) = g({a1, . . . , an}). We say that A is essentially
polyadic when a round’s winning item is determined solely by
which items were played, not taking into account which player
played which item or how many players chose a particular item.
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Properties of RPS: Strong Fairness

Let Ak denote the members of An which have k distinct
components for some k ∈ N. We say that f is strongly fair when
for all a, b ∈ A and all k ∈ N we have∣∣f−1(a) ∩ Ak

∣∣ = ∣∣f−1(b) ∩ Ak
∣∣. We say that A is strongly fair when

each item has the same chance of being the winning item when
exactly k distinct items are chosen for any k ∈ N.
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Properties of RPS: Nondegeneracy

We say that f is nondegenerate when |A| > n. In the case that
|A| ≤ n we have that all members of A|A| have the same set of
components. If A is essentially polyadic with |A| ≤ n it is
impossible for A to be strongly fair unless |A| = 1.
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Variants with More Items

The French version of RPS adds one more item: the well. This
game is not strongly fair but is conservative and essentially
polyadic. The recent variant Rock-Paper-Scissors-Spock-Lizard is
conservative, essentially polyadic, strongly fair, and nondegenerate.

r p s w
r r p r w
p p p s p
s r s s w

w w p w w

r p s v l
r r p r v r
p p p s p l
s r s s v s
v v p v v l
l r l s l l
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Result for Two-Player Games

The only “valid” RPS variants for two players use an odd number
of items.
Proposition
Let A be a selection game with n = 2 which is essentially polyadic,
strongly fair, and nondegenerate and let m := |A|. We have that
m ̸= 1 is odd. Conversely, for each odd m ̸= 1 there exists such a
selection game.
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PRPS Magmas

Definition (PRPS magma)
Let A := (A, f) be an n-ary magma. When A is essentially
polyadic, strongly fair, and nondegenerate we say that A is a PRPS
magma (read “pseudo-RPS magma”). When A is an n-magma of
order m ∈ N with these properties we say that A is a PRPS(m, n)
magma. We also use PRPS and PRPS(m, n) to indicate the
classes of such magmas.
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Result for Multiplayer Games

Theorem
Let A ∈ PRPS(m, n) and let ϖ(m) denote the least prime dividing
m. We have that n < ϖ(m). Conversely, for each pair (m, n) with
m ̸= 1 such that n < ϖ(m) there exists such a magma.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

RPS Magmas

Definition (RPS magma)
Let A := (A, f) be an n-ary magma. When A is conservative,
essentially polyadic, strongly fair, and nondegenerate we say that A
is an RPS magma. When A is an n-magma of order m with these
properties we say that A is an RPS(m, n) magma. We also use
RPS and RPS(m, n) to indicate the classes of such magmas.
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α-action Magmas

Definition (α-action magma)
Fix a group G, a set A, and some n < |A|. Given a regular group
action α:G → Perm(A) such that each of the k-extensions of α is
free for 1 ≤ k ≤ n let Ψk :=

{
Orb(U)

∣∣∣ U ∈
(A

k
)}

where Orb(U) is
the orbit of U under αk. Let β := {βk}1≤k≤n be a sequence of
choice functions βk: Ψk →

(A
k
)

such that βk(ψ) ∈ ψ for each
ψ ∈ Ψk. Let γ := {γk}1≤k≤n be a sequence of functions
γk: Ψk → A such that γk(ψ) ∈ βk(ψ) for each ψ ∈ Ψk. Let
g: Sb≤n(A) → A be given by g(U) := (α(s))(γk(ψ)) when
U = (αk(s))(βk(ψ)). Define f:An → A by
f(a1, . . . , an) := g({a1, . . . , an}). The α-action magma induced by
(β, γ) is A := (A, f).
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α-action Magmas are RPS Magmas

Theorem
Let A be an α-action magma induced by (β, γ). We have that
A ∈ RPS.

Definition (Regular RPS magma)
Let G be a nontrivial finite group and fix n < ϖ(|G|). We denote
by Gn(β, γ) the L-action n-magma induced by (β, γ), which we
refer to as a regular RPS magma.
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A Game for Three Players

0 0 1 2 3 4
0 0 1 0 3 0
1 1 1 0 0 4
2 0 0 0 2 4
3 3 0 2 3 3
4 0 4 4 3 0

1 0 1 2 3 4
0 1 1 0 0 4
1 1 1 2 1 4
2 0 2 2 1 1
3 0 1 1 1 3
4 4 4 1 3 4

2 0 1 2 3 4
0 0 0 0 2 4
1 0 2 2 1 1
2 0 2 2 3 2
3 2 1 3 3 2
4 4 1 2 2 2

3 0 1 2 3 4
0 3 0 2 3 3
1 0 1 1 1 3
2 2 1 3 3 2
3 3 1 3 3 4
4 3 3 2 4 4

4 0 1 2 3 4
0 0 4 4 3 0
1 4 4 1 3 4
2 4 1 2 2 2
3 3 3 2 4 4
4 0 4 2 4 4
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Functions Exhibiting Essential Polyadicity

U 0 1 2 01 12 20
g(U) 0 1 2 0 1 2

RPS

U 0 1 2 01 12 23 34 40 02 13 24 30 41
g(U) 0 1 2 1 2 3 4 0 0 1 2 3 4

U 012 123 234 340 401 013 124 230 341 402
g(U) 0 1 2 3 4 0 1 2 3 4

RPS(5, 3) example
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Hypergraphs

Definition (Pointed hypergraph)
A pointed hypergraph S := (S, σ, g) consists of a hypergraph (S, σ)
and a map g:σ → S such that for each edge e ∈ σ we have that
g(e) ∈ e. The map g is called a pointing of (S, σ).

Definition (n-complete hypergraph)
Given a set S we denote by Sn the n-complete hypergraph whose
vertex set is S and whose edge set is

∪n
k=1

(S
k
)
.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Hypertournaments

Definition (Hypertournament)
An n-hypertournament is a pointed hypergraph T := (T, τ, g)
where (T, τ) = Sn for some set S.

U 0 1 2 01 12 23 34 40 02 13 24 30 41
g(U) 0 1 2 1 2 3 4 0 0 1 2 3 4

U 012 123 234 340 401 013 124 230 341 402
g(U) 0 1 2 3 4 0 1 2 3 4

RPS(5, 3) example
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Hypertournament Magmas

Definition (Hypertournament magma)
Given an n-hypertournament T := (T, τ, g) the hypertournament
magma obtained from T is the n-magma A := (T, f) where for
u1, . . . , un ∈ T we define

f(u1, . . . , un) := g({u1, . . . , un}).

Definition (Hypertournament magma)
A hypertournament magma is an n-magma which is conservative
and essentially polyadic.
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Tournaments

Tournaments are the n = 2 case of a hypertournament.
Hedrlín and Chvátal introduced the n = 2 case of a
hypertournament magma in 1965.
There has been a lot of work on varieties generated by
tournament magmas. See for example the survey by
Crvenković et al. (1999).
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Class Containment Relationships

Proposition
Let n > 1. We have that RPSn ⊊ PRPSn, RPS2 ⊊ Tourn, and
neither of PRPSn and Tourn contains the other. Moreover,
RPSn = PRPSn ∩Tourn.
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A Generation Result

Theorem
Let n > 1. We have that Tn = Rn. Moreover Tn is generated by
the class of finite regular RPSn magmas.

Proof.
Every finite hypertournament can be embedded in a finite regular
balanced hypertournament.
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Counting Regular RPS Magmas

Theorem
Let m, n ∈ N with m ̸= 1 and n < ϖ(m). Given a group G of order
m we have that

|RPS(G, n)| =
n∏

k=1
k 1

m(
m
k).
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Automorphisms

Proposition
Let A := Gn(λ) be a regular RPS magma. There is a canonical
embedding of G into Aut(A).
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Exceptional Automorphisms

Proposition
For each arity n ∈ N with n ̸= 1 and each group G of composite
order m ∈ N with n < ϖ(m) there exists a regular RPS(m, n)
magma A := Gn(λ) such that |Aut(A)| > |G|.

Proposition
For each arity n ∈ N and each odd prime p such that
1 ̸= n ≤ p − 2 there exists a regular RPS(p, n) magma
A := (Zp)n(λ) such that |Aut(A)| > |G|.
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No Exceptional Automorphisms

Proposition
For each odd prime p and any λ ∈ Sgnp−1(Zp) we have that
Aut((Zp)p−1(λ)) ∼= Zp.

Corollary
Given an odd prime p the number of isomorphism classes of
magmas of the form (Zp)p−1(λ) is

p−1∏
k=1

k
1
p(

p
k)−1

.

For p = 3 we have 1, for p = 5 we have 6, and for p = 7 we have
2073600.
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Congruences

Theorem
Let θ ∈ Con(A) for a regular RPS(m, n) magma A := Gn(λ). Given
any a ∈ A we have that a/θ = aH for some subgroup H ≤ G.
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λ-convex subgroups

Definition (λ-convex subgroup)
Given a group G, an n-sign function λ ∈ Sgnn(G), and a subgroup
H ≤ G we say that H is λ-convex when there exists some a ∈ G
such that a/θ = aH for some θ ∈ Con(Gn(λ)).
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λ-convex subgroups

Proposition
Let G be a finite group of order m and let n < ϖ(m). Take
λ ∈ Sgnn(G) and H ≤ G. The following are equivalent:

1 The subgroup H is λ-convex.
2 There exists a congruence ψ ∈ Con(Gn(λ)) such that

e/ψ = H.
3 Given 1 ≤ k ≤ n − 1 and b1, . . . , bk /∈ H either

e → {b1h1, . . . , bkhk} for every choice of h1, . . . , hk ∈ H or
{b1h1, . . . , bkhk} → e for every choice of h1, . . . , hk ∈ H.
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λ-convex subgroups

Theorem
Suppose that H,K ≤ G are both λ-convex. We have that H ≤ K
or K ≤ H.
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λ-cost Poset

Definition (λ-coset poset)
Given λ ∈ Sgnn(G) set

Pλ := { aH | a ∈ G and H is λ-convex }

and define the λ-coset poset to be Pλ := (Pλ,⊂).
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Lattices of Maximal Antichains

Dilworth showed that the maximal antichains of a finite poset form
a distributive lattice. Freese (1974) gives a succinct treatment of
this. Given a finite poset P := (P,≤) let L(P) be the lattice whose
elements are maximal antichains in P where if U,V ∈ L(P) then
we say that U ≤ V in L(P) when for every u ∈ U there exists some
v ∈ V such that u ≤ v in P.
Theorem
We have that Con(Gn(λ)) ∼= L(Pλ).
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A Family of Simple Magmas

Theorem
Suppose that G = Zpk for a prime p and n < p. There exists a
λ ∈ Sgnn(G) for which Gn(λ) is simple.
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A Family of Simple Magmas

Proof.
Order the nontrivial subgroups of G as H1 ≤ · · · ≤ Hk = G. For
each 1 ≤ i ≤ k − 1 choose a coset a + Hi of Hi other than Hi itself
which lies in Hi+1. Choose another element b ∈ a + Hi with b ̸= a.
Set λ({a,−a}) := a and λ({b,−b}) := −b. We have that Hi is
not λ-convex for 1 ≤ i ≤ k − 1. It follows that Gn(λ) has no
nontrivial proper λ-convex subgroups for this choice of λ so Gn(λ)
is simple.
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Thank you.


