More Multiplayer Rock-Paper-Scissors

Charlotte Aten

University of Rochester

2019

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

We will view the game of RPS as a magma. We let $A := \{r, p, s\}$ and define a binary operation $f: A^2 \to A$ where f(x, y) is the winning item among $\{x, y\}$.

	r	р	5
r	r	р	r
р	р	р	5
5	r	5	5

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A selection game is a game consisting of a collection of items A, from which a fixed number of players n each choose one, resulting in a tuple $a \in A^n$, following which the round's winners are those who chose f(a) for some fixed rule $f: A^n \to A$. RPS is a selection game, and we can identify each such game with an *n*-ary magma $\mathbf{A} := (A, f)$.

Properties of RPS

The game RPS is

- conservative,
- essentially polyadic,
- 3 strongly fair, and
- 4 nondegenerate.

These are the properties we want for a multiplayer game, as well.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We say that an operation $f: A^n \to A$ is *conservative* when for any $a_1, \ldots, a_n \in A$ we have that $f(a_1, \ldots, a_n) \in \{a_1, \ldots, a_n\}$. We say that **A** is conservative when each round has at least one winning player.

We say that an operation $f: A^n \to A$ is essentially polyadic when there exists some $g: Sb(A) \to A$ such that for any $a_1, \ldots, a_n \in A$ we have $f(a_1, \ldots, a_n) = g(\{a_1, \ldots, a_n\})$. We say that **A** is essentially polyadic when a round's winning item is determined solely by which items were played, not taking into account which player played which item or how many players chose a particular item.

▲□▶▲□▶▲□▶▲□▶ = のへで

Let A_k denote the members of A^n which have k distinct components for some $k \in \mathbb{N}$. We say that f is *strongly fair* when for all $a, b \in A$ and all $k \in \mathbb{N}$ we have $|f^{-1}(a) \cap A_k| = |f^{-1}(b) \cap A_k|$. We say that **A** is strongly fair when each item has the same chance of being the winning item when exactly k distinct items are chosen for any $k \in \mathbb{N}$.

We say that *f* is *nondegenerate* when |A| > n. In the case that $|A| \le n$ we have that all members of $A_{|A|}$ have the same set of components. If **A** is essentially polyadic with $|A| \le n$ it is impossible for **A** to be strongly fair unless |A| = 1.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The French version of RPS adds one more item: the well. This game is not strongly fair but is conservative and essentially polyadic. The recent variant Rock-Paper-Scissors-Spock-Lizard is conservative, essentially polyadic, strongly fair, and nondegenerate.

r p s	r	n	c	147		r	р	5	V	Ι
	1	Ρ	3	VV	r	r	n	r	V	r
r	r	р	r	W			٣		•	,
n	n	'n	c	n	р	р	р	S	р	1
ρ	Ρ	Ρ	5	Ρ	S	r	S	S	v	S
5	r	S	S	W	-	-		-	-	-
147	w	n	147	147	V	V	р	V	V	1
vv	vv	Ρ	vv	vv	1	r	p s p I	5	1	1

The only "valid" RPS variants for two players use an odd number of items.

Proposition

Let **A** be a selection game with n = 2 which is essentially polyadic, strongly fair, and nondegenerate and let m := |A|. We have that $m \neq 1$ is odd. Conversely, for each odd $m \neq 1$ there exists such a selection game.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition (PRPS magma)

Let $\mathbf{A} := (A, f)$ be an *n*-ary magma. When \mathbf{A} is essentially polyadic, strongly fair, and nondegenerate we say that \mathbf{A} is a PRPS magma (read "pseudo-RPS magma"). When \mathbf{A} is an *n*-magma of order $m \in \mathbb{N}$ with these properties we say that \mathbf{A} is a PRPS(m, n) magma. We also use PRPS and PRPS(m, n) to indicate the classes of such magmas.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Theorem

Let $\mathbf{A} \in \mathsf{PRPS}(m, n)$ and let $\varpi(m)$ denote the least prime dividing m. We have that $n < \varpi(m)$. Conversely, for each pair (m, n) with $m \neq 1$ such that $n < \varpi(m)$ there exists such a magma.

RPS Magmas

Definition (RPS magma)

Let $\mathbf{A} := (A, f)$ be an *n*-ary magma. When \mathbf{A} is conservative, essentially polyadic, strongly fair, and nondegenerate we say that \mathbf{A} is an RPS *magma*. When \mathbf{A} is an *n*-magma of order *m* with these properties we say that \mathbf{A} is an RPS(m, n) magma. We also use RPS and RPS(m, n) to indicate the classes of such magmas.

Definition (α -action magma)

Fix a group **G**, a set A, and some n < |A|. Given a regular group action α : **G** \rightarrow **Perm**(*A*) such that each of the *k*-extensions of α is free for $1 \le k \le n$ let $\Psi_k \coloneqq \left\{ \operatorname{Orb}(U) \mid U \in \binom{A}{k} \right\}$ where $\operatorname{Orb}(U)$ is the orbit of U under α_k . Let $\beta := \{\beta_k\}_{1 \le k \le n}$ be a sequence of choice functions $\beta_k: \Psi_k \to {\binom{A}{k}}$ such that $\beta_k(\psi) \in \psi$ for each $\psi \in \Psi_k$. Let $\gamma := \{\gamma_k\}_{1 \le k \le n}$ be a sequence of functions $\gamma_k: \Psi_k \to A$ such that $\gamma_k(\overline{\psi}) \in \beta_k(\psi)$ for each $\psi \in \Psi_k$. Let g: Sb_{<n}(A) \rightarrow A be given by $g(U) := (\alpha(s))(\gamma_k(\psi))$ when $U = (\alpha_k(s))(\beta_k(\psi))$. Define $f: A^n \to A$ by $f(a_1, \ldots, a_n) := g(\{a_1, \ldots, a_n\})$. The α -action magma induced by (β, γ) is $\mathbf{A} := (A, f)$.

Theorem

Let **A** be an α -action magma induced by (β, γ) . We have that **A** \in RPS.

Definition (Regular RPS magma)

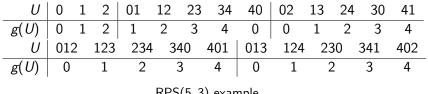
Let **G** be a nontrivial finite group and fix $n < \varpi(|G|)$. We denote by **G**_n(β, γ) the *L*-action *n*-magma induced by (β, γ), which we refer to as a *regular* RPS *magma*.

A Game for Three Players

0	0	1	2	3	4	1	0	1	2	3	4	2	0	1	2	3	4
0	0	1	0	3	0	0	1	1	0	0	4	0	0	0	0	2	4
1	1	1	0	0	4	1	1	1	2	1	4	1	0	2	2	1	1
2	0	0	0	2	4	2	0	2	2	1	1	2	0	2	2	3	2
3	3	0	2	3	3	3	0	1	1	1 3	3	3	2	1	3	3	2
4	0	4	4	3	0	4	4	4	1	3	4	4	4	1	2	2	2
			3	0	1	2	3	4	4	0	1	2	3	4			
			1	0	1	1	1	3	1	4	4	1	3	4			
			2	2	1	3	3	2	2	4	1	2	2	2			
			3	3	1	3	3	4	3	3	3	2	4	4			
			4	3	3	2	4	4	4	0	4	2	4	4			

(ロ)、(型)、(E)、(E)、 E) の(()

Functions Exhibiting Essential Polyadicity



RPS(5,3) example

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Definition (Pointed hypergraph)

A pointed hypergraph $\mathbf{S} := (S, \sigma, g)$ consists of a hypergraph (S, σ) and a map $g: \sigma \to S$ such that for each edge $e \in \sigma$ we have that $g(e) \in e$. The map g is called a *pointing* of (S, σ) .

Definition (*n*-complete hypergraph)

Given a set S we denote by \mathbf{S}_n the *n*-complete hypergraph whose vertex set is S and whose edge set is $\bigcup_{k=1}^n {S \choose k}$.

Definition (Hypertournament)

An *n*-hypertournament is a pointed hypergraph $\mathbf{T} := (T, \tau, g)$ where $(T, \tau) = \mathbf{S}_n$ for some set *S*.

U	0	1	2	01	12	23	34	40	02	13	24	30	41
g(U)	0	1	2	1	2	3	4	0	0	1	2	3	4
U	012	2	123	234	34	40	401	013	124	23	80	341	402
g(U)	0	0 1 2 3 4 0 1							2	<u>)</u>	3	4	
RPS(5, 3) example													

Definition (Hypertournament magma)

Given an *n*-hypertournament $\mathbf{T} := (T, \tau, g)$ the hypertournament magma obtained from **T** is the *n*-magma $\mathbf{A} := (T, f)$ where for $u_1, \ldots, u_n \in T$ we define

$$f(u_1,\ldots,u_n) \coloneqq g(\{u_1,\ldots,u_n\}).$$

Definition (Hypertournament magma)

A hypertournament magma is an *n*-magma which is conservative and essentially polyadic.

- Tournaments are the n = 2 case of a hypertournament.
- Hedrlín and Chvátal introduced the n = 2 case of a hypertournament magma in 1965.
- There has been a lot of work on varieties generated by tournament magmas. See for example the survey by Crvenković et al. (1999).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

Let n > 1. We have that $\text{RPS}_n \subsetneq \text{PRPS}_n$, $\text{RPS}_2 \subsetneq \text{Tour}_n$, and neither of PRPS_n and Tour_n contains the other. Moreover, $\text{RPS}_n = \text{PRPS}_n \cap \text{Tour}_n$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Theorem

Let n > 1. We have that $T_n = \mathcal{R}_n$. Moreover T_n is generated by the class of finite regular RPS_n magmas.

Proof.

Every finite hypertournament can be embedded in a finite regular balanced hypertournament.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem

Let $m, n \in \mathbb{N}$ with $m \neq 1$ and $n < \varpi(m)$. Given a group **G** of order m we have that

$$|\mathsf{RPS}(\mathbf{G},n)| = \prod_{k=1}^{n} k^{\frac{1}{m}\binom{m}{k}}.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

Let $\mathbf{A} := \mathbf{G}_n(\lambda)$ be a regular RPS magma. There is a canonical embedding of \mathbf{G} into $\mathbf{Aut}(\mathbf{A})$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Proposition

For each arity $n \in \mathbb{N}$ with $n \neq 1$ and each group **G** of composite order $m \in \mathbb{N}$ with $n < \varpi(m)$ there exists a regular RPS(m, n)magma $\mathbf{A} := \mathbf{G}_n(\lambda)$ such that $|\operatorname{Aut}(\mathbf{A})| > |\mathbf{G}|$.

Proposition

For each arity $n \in \mathbb{N}$ and each odd prime p such that $1 \neq n \leq p-2$ there exists a regular RPS(p, n) magma $\mathbf{A} := (\mathbb{Z}_p)_n(\lambda)$ such that $|\mathbf{Aut}(\mathbf{A})| > |\mathbf{G}|$.

No Exceptional Automorphisms

Proposition

For each odd prime p and any $\lambda \in \text{Sgn}_{p-1}(\mathbb{Z}_p)$ we have that $\text{Aut}((\mathbb{Z}_p)_{p-1}(\lambda)) \cong \mathbb{Z}_p$.

Corollary

Given an odd prime p the number of isomorphism classes of magmas of the form $(\mathbb{Z}_p)_{p-1}(\lambda)$ is

$$\prod_{k=1}^{p-1} k^{\frac{1}{p}\binom{p}{k}-1}.$$

For p = 3 we have 1, for p = 5 we have 6, and for p = 7 we have 2073600.

Theorem

Let $\theta \in \text{Con}(\mathbf{A})$ for a regular RPS(m, n) magma $\mathbf{A} \coloneqq \mathbf{G}_n(\lambda)$. Given any $a \in A$ we have that $a/\theta = aH$ for some subgroup $\mathbf{H} \leq \mathbf{G}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

Definition (λ -convex subgroup)

Given a group **G**, an *n*-sign function $\lambda \in \text{Sgn}_n(\mathbf{G})$, and a subgroup $\mathbf{H} \leq \mathbf{G}$ we say that **H** is λ -convex when there exists some $a \in G$ such that $a/\theta = aH$ for some $\theta \in \text{Con}(\mathbf{G}_n(\lambda))$.

Proposition

Let **G** be a finite group of order *m* and let $n < \varpi(m)$. Take $\lambda \in \text{Sgn}_n(\mathbf{G})$ and $\mathbf{H} \leq \mathbf{G}$. The following are equivalent:

1 The subgroup **H** is λ -convex.

- **2** There exists a congruence $\psi \in \text{Con}(\mathbf{G}_n(\lambda))$ such that $e/\psi = H$.
- **3** Given $1 \le k \le n-1$ and $b_1, \ldots, b_k \notin H$ either $e \to \{b_1h_1, \ldots, b_kh_k\}$ for every choice of $h_1, \ldots, h_k \in H$ or $\{b_1h_1, \ldots, b_kh_k\} \to e$ for every choice of $h_1, \ldots, h_k \in H$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem

Suppose that $H, K \leq G$ are both λ -convex. We have that $H \leq K$ or $K \leq H$.

Definition (λ -coset poset) Given $\lambda \in \text{Sgn}_n(\mathbf{G})$ set $P_{\lambda} := \{ aH \mid a \in G \text{ and } \mathbf{H} \text{ is } \lambda\text{-convex} \}$

and define the λ -coset poset to be $\mathbf{P}_{\lambda} \coloneqq (P_{\lambda}, \subset)$.

Dilworth showed that the maximal antichains of a finite poset form a distributive lattice. Freese (1974) gives a succinct treatment of this. Given a finite poset $\mathbf{P} := (P, \leq)$ let $\mathbf{L}(\mathbf{P})$ be the lattice whose elements are maximal antichains in \mathbf{P} where if $U, V \in L(\mathbf{P})$ then we say that $U \leq V$ in $\mathbf{L}(\mathbf{P})$ when for every $u \in U$ there exists some $v \in V$ such that $u \leq v$ in \mathbf{P} .

Theorem

We have that $\operatorname{Con}(\mathbf{G}_n(\lambda)) \cong \mathbf{L}(\mathbf{P}_{\lambda})$.

Theorem

Suppose that $\mathbf{G} = \mathbb{Z}_{p^k}$ for a prime p and n < p. There exists a $\lambda \in \text{Sgn}_n(\mathbf{G})$ for which $\mathbf{G}_n(\lambda)$ is simple.

Proof.

Order the nontrivial subgroups of **G** as $\mathbf{H}_1 \leq \cdots \leq \mathbf{H}_k = \mathbf{G}$. For each $1 \leq i \leq k-1$ choose a coset $a + H_i$ of H_i other than H_i itself which lies in H_{i+1} . Choose another element $b \in a + H_i$ with $b \neq a$. Set $\lambda(\{a, -a\}) := a$ and $\lambda(\{b, -b\}) := -b$. We have that \mathbf{H}_i is not λ -convex for $1 \leq i \leq k-1$. It follows that $\mathbf{G}_n(\lambda)$ has no nontrivial proper λ -convex subgroups for this choice of λ so $\mathbf{G}_n(\lambda)$ is simple.

Thank you.

(ロ)、(型)、(E)、(E)、(E)、(O)()