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RPS as a Magma

We will view the game of RPS as a magma. We let A := {r, p, s}
and define a binary operation f. A> — A where f(x, y) is the
winning item among {x, y}.




Selection Games

A selection game is a game consisting of a collection of items A,
from which a fixed number of players n each choose one, resulting
in a tuple a € A", following which the round’s winners are those
who chose f{a) for some fixed rule . A” — A. RPS is a selection
game, and we can identify each such game with an n-ary magma
A= (A).



Properties of RPS

The game RPS is
conservative,
essentially polyadic,
strongly fair, and
nondegenerate.

These are the properties we want for a multiplayer game, as well.



Properties of RPS: Conservativity

We say that an operation f: A" — A is conservative when for any
ai,...,an € A we have that fla;,...,a,) € {a1,...,an}. We say
that A is conservative when each round has at least one winning
player.



Properties of RPS: Essential Polyadicity

We say that an operation f: A" — A is essentially polyadic when
there exists some g: Sb(A) — A such that for any a1,...,a, € A we
have fla1,...,an) = g({a1,...,an}). We say that A is essentially
polyadic when a round’s winning item is determined solely by
which items were played, not taking into account which player
played which item or how many players chose a particular item.



Properties of RPS: Strong Fairness

Let Ax denote the members of A” which have k distinct
components for some k € N. We say that fis strongly fair when
for all a,b€ A and aII k € N we have

‘f )N Ak‘ = ‘f )N Ak‘. We say that A is strongly fair when
each item has the same chance of being the winning item when
exactly k distinct items are chosen for any k € N.



Properties of RPS: Nondegeneracy

We say that fis nondegenerate when |A| > n. In the case that
|A| < n we have that all members of A 4 have the same set of
components. If A is essentially polyadic with |A| < niit is
impossible for A to be strongly fair unless |A| = 1.



Variants with More Items

The French version of RPS adds one more item: the well. This
game is not strongly fair but is conservative and essentially
polyadic. The recent variant Rock-Paper-Scissors-Spock-Lizard is
conservative, essentially polyadic, strongly fair, and nondegenerate.
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Result for Two-Player Games

The only “valid” RPS variants for two players use an odd number
of items.

Proposition

Let A be a selection game with n = 2 which is essentially polyadic,
strongly fair, and nondegenerate and let m == |A|. We have that
m # 1 is odd. Conversely, for each odd m # 1 there exists such a
selection game.



PRPS Magmas

Definition (PRPS magma)

Let A := (A, f) be an n-ary magma. When A is essentially
polyadic, strongly fair, and nondegenerate we say that A is a PRPS
magma (read “pseudo-RPS magma™). When A is an n-magma of
order m € N with these properties we say that A is a PRPS(m, n)
magma. We also use PRPS and PRPS(m, n) to indicate the
classes of such magmas.



Result for Multiplayer Games

Theorem

Let A € PRPS(m, n) and let ww(m) denote the least prime dividing
m. We have that n < w(m). Conversely, for each pair (m, n) with
m # 1 such that n < w(m) there exists such a magma.



RPS Magmas

Definition (RPS magma)

Let A := (A, f) be an n-ary magma. When A is conservative,
essentially polyadic, strongly fair, and nondegenerate we say that A
is an RPS magma. When A is an n-magma of order m with these
properties we say that A is an RPS(m, n) magma. We also use
RPS and RPS(m, n) to indicate the classes of such magmas.



a-action Magmas

Definition (a-action magma)

Fix a group G, a set A, and some n < |A|. Given a regular group
action a: G — Perm(A) such that each of the k-extensions of « is
free for 1 < k< nlet ¥y = {Orb(U) ‘ Ue (’2) } where Orb(U) is
the orbit of U under ay. Let 8 := {Bk};<4<, be a sequence of
choice functions Bx: Wi — (7)) such that Bx(v) € ¢ for each

1 € Vy. Let v = {Vk}; <4<, be a sequence of functions

Yk Wi — A such that vx(1)) € Br(rp) for each 1 € Wy. Let
g:Sb<n(A) — A be given by g(U) := (a(s))(7«(+)) when

U= (ak(s))(Bk(v)). Define £. A" — A by

flai,...,an) = g({a1,...,an}). The a-action magma induced by

(8,7) is A= (A,f).



a-action Magmas are RPS Magmas

Theorem

Let A be an a-action magma induced by (3,7). We have that
A € RPS.

Definition (Regular RPS magma)

Let G be a nontrivial finite group and fix n < w(|G|). We denote
by G,(3,7) the L-action n-magma induced by (f3,~), which we
refer to as a regular RPS magma.
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Functions Exhibiting Essential Polyadicity

U[0 1 2]01 12 23 34 40[02 13 24 30 41
gy|[o 1 21 2 3 4 0]0 1 2 3 4
U012 123 234 340 401 | 013 124 230 341 402
gU) | 0 1 2 3 4]0 1 2 3 4

RPS(5, 3) example



Hypergraphs

Definition (Pointed hypergraph)

A pointed hypergraph S := (S, 0, g) consists of a hypergraph (S, o)
and a map g: 0 — S such that for each edge e € o we have that
g(e) € e. The map g is called a pointing of (S, o).

Definition (n-complete hypergraph)

Given a set S we denote by S, the n-complete hypergraph whose
vertex set is S and whose edge set is |J[_; (3).



Hypertournaments

Definition (Hypertournament)

An n-hypertournament is a pointed hypergraph T = (T, 7, g)
where (T,7) = S, for some set S.

|01 12 23 34 40[02 13 24 30 41

ulo 1 2
gl |01 2|1 2 3 4 0[]0 1 2 3 4
U|012 123 234 340 401 | 013 124 230 341 402
gU) | 0 1 2 3 4]0 1 2 3 4

RPS(5, 3) example



Hypertournament Magmas

Definition (Hypertournament magma)

Given an n-hypertournament T := (T, 7, g) the hypertournament
magma obtained from T is the n-magma A = (T, f) where for
ui,...,u, € T we define

Rur, ..., un) = g({ur,...,un}).

Definition (Hypertournament magma)

A hypertournament magma is an n-magma which is conservative
and essentially polyadic.



Tournaments

m Tournaments are the n = 2 case of a hypertournament.

m Hedrlin and Chvatal introduced the n = 2 case of a
hypertournament magma in 1965.

m There has been a lot of work on varieties generated by
tournament magmas. See for example the survey by
Crvenkovi¢ et al. (1999).



Class Containment Relationships

Proposition

Let n > 1. We have that RPS, C PRPS,, RPS; C Tour,, and
neither of PRPS,, and Tour, contains the other. Moreover,
RPS, = PRPS,, N Tour,,.



A Generation Result

Theorem

Let n > 1. We have that T, = R,. Moreover T, is generated by
the class of finite regular RPS,, magmas.

Proof.

Every finite hypertournament can be embedded in a finite regular
balanced hypertournament. Ol



Counting Regular RPS Magmas

Theorem
Let m,n € N with m# 1 and n < w(m). Given a group G of order
m we have that .

IRPS(G, n)| = [T k=(%).

k=1



Automorphisms

Proposition

Let A = G,(\) be a regular RPS magma. There is a canonical
embedding of G into Aut(A).



Exceptional Automorphisms

Proposition

For each arity n € N with n # 1 and each group G of composite
order m € N with n < w(m) there exists a regular RPS(m, n)
magma A = G,()) such that |Aut(A)| > |G|.

Proposition

For each arity n € N and each odd prime p such that
1 # n < p— 2 there exists a regular RPS(p, n) magma
A = (Zp)n(N) such that |Aut(A)| > |G|.



No Exceptional Automorphisms

Proposition

For each odd prime p and any A € Sgn,,_1(Z,) we have that
Aut((Zp)p-1(}A)) = Zp.

Corollary

Given an odd prime p the number of isomorphism classes of
magmas of the form (Zp)p—1(A) is

For p = 3 we have 1, for p =5 we have 6, and for p = 7 we have
2073600.



Congruences

Theorem

Let § € Con(A) for a regular RPS(m, n) magma A := G,()). Given
any a € A we have that a/0 = aH for some subgroup H < G.



A-convex subgroups

Definition (A-convex subgroup)

Given a group G, an n-sign function A € Sgn,(G), and a subgroup
H < G we say that H is A-convex when there exists some a € G
such that a/6 = aH for some 6 € Con(G,(A)).



A-convex subgroups

Proposition
Let G be a finite group of order m and let n < w(m). Take
A € Sgn,(G) and H < G. The following are equivalent:
H The subgroup H is \-convex.
B There exists a congruence 1) € Con(G,(\)) such that
e/ = H.
Givenl1 < k<n-—1and by,...,bx ¢ H either
e — {bih1,..., bxhy} for every choice of hy,..., hx € H or
{b1h1,...,bxhi} — e for every choice of hy,..., hy € H.



A-convex subgroups

Theorem

Suppose that H,K < G are both A-convex. We have that H < K
or K < H.



M-cost Poset

Definition (A-coset poset)
Given A € Sgn,(G) set

Py, :={aH|a€ Gand H is A\-convex }

and define the A-coset poset to be Py := (Py, C).



Lattices of Maximal Antichains

Dilworth showed that the maximal antichains of a finite poset form
a distributive lattice. Freese (1974) gives a succinct treatment of
this. Given a finite poset P := (P, <) let L(P) be the lattice whose
elements are maximal antichains in P where if U, V € L(P) then
we say that U < Vin L(P) when for every u € U there exists some
v € Vsuch that u < vin P.

Theorem
We have that Con(G,(\)) = L(P)).



A Family of Simple Magmas

Theorem

Suppose that G = Z for a prime p and n < p. There exists a
A € Sgn,(G) for which G,(\) is simple.



A Family of Simple Magmas

Proof.

Order the nontrivial subgroups of G as H; < --- < H, = G. For
each 1 < i< k—1 choose a coset a+ H; of H; other than H; itself
which lies in Hj;1. Choose another element b € a+ H; with b # a.
Set A\({a, —a}) = a and \({b, —b}) := —b. We have that H; is
not A-convex for 1 < i< k— 1. It follows that G,() has no
nontrivial proper A-convex subgroups for this choice of A so G,())
is simple. [



Thank you.



