Multiplayer rock-paper-scissors

Charlotte Aten

University of Rochester

2021 March 26

(ロ)、(型)、(E)、(E)、 E) の(()

Introduction

- In the summer of 2017 I lived in a cave in Yosemite National Park.
- While there I wanted to explain to my friends that I study universal algebra.
- I realized that rock-paper-scissors was a particularly simple way to do that.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We will view the game of RPS as a magma $\mathbf{A} := (A, f)$. We let $A := \{r, p, s\}$ and define a binary operation $f: A^2 \to A$ where f(x, y) is the winning item among $\{x, y\}$.

	r	р	5	
r	r	р	r	
р	p	р	5	
S	r	5	5	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

- I also realized that I wanted to be able to play with many of my friends at the same time.
- This led me to study hypertournaments and hypertournament algebras.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Talk outline

- Definition of RPS and PRPS magmas
- A numerical constraint relating arity and order

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Regular RPS magmas
- Hypertournaments
- An embedding result

Properties of RPS

The game RPS is

- conservative,
- essentially polyadic,
- 3 strongly fair, and
- 4 nondegenerate.

These are the properties we want for a multiplayer game, as well.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Suppose we have an *n*-ary magma $\mathbf{A} := (A, f)$ where $f: A^n \to A$.
- The selection game for **A** has *n* players, p_1, p_2, \ldots, p_n .
- Each player p_i simultaneously chooses an item $a_i \in A$.

The winners of the game are all players who chose f(a₁,..., a_n).

- We say that an operation f. Aⁿ → A is conservative when for any a₁,..., a_n ∈ A we have that f(a₁,..., a_n) ∈ {a₁,..., a_n}.
- We say that A is conservative when each round has at least one winning player.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- We say that an operation $f: A^n \to A$ is essentially polyadic when there exists some $g: Sb(A) \to A$ such that for any $a_1, \ldots, a_n \in A$ we have $f(a_1, \ldots, a_n) = g(\{a_1, \ldots, a_n\})$.
- We say that A is essentially polyadic when a round's winning item is determined solely by which items were played, not taking into account which player played which item or how many players chose a particular item (as long at it was chosen at least once).

- Let A_k denote the members of Aⁿ which have k distinct components for some k ∈ N.
- We say that f is strongly fair when for all $a, b \in A$ and all $k \in \mathbb{N}$ we have $|f^{-1}(a) \cap A_k| = |f^{-1}(b) \cap A_k|$.
- We say that A is strongly fair when each item has the same chance of being the winning item when exactly k distinct items are chosen for any k ∈ N.

- We say that f is nondegenerate when |A| > n.
- In the case that |A| ≤ n we have that all members of A_{|A|} have the same set of components.
- If A is essentially polyadic with |A| ≤ n it is impossible for A to be strongly fair unless |A| = 1.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The French version of RPS adds one more item: the well. This game is not strongly fair but is conservative and essentially polyadic.

	r	р	5	W
r	r	р	r	W
р	р	р	5	р
5	r	5	5	W
W	w	р	W	W

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The recent variant Rock-Paper-Scissors-Spock-Lizard is conservative, essentially polyadic, strongly fair, and nondegenerate.

	r	р	5	V	1
r	r	р	r	V	r
р	р	р	5	р	1
5	r	5	5	V	5
V	v	р	V	V	1
1	r	1	5	Ι	1

The only "valid" RPS variants for two players use an odd number of items.

Proposition

Let **A** be a selection game with n = 2 which is essentially polyadic, strongly fair, and nondegenerate and let m := |A|. We have that $m \neq 1$ is odd. Conversely, for each odd $m \neq 1$ there exists such a selection game.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof.

We need $m \mid \binom{m}{2}$.

Definition (PRPS magma)

Let $\mathbf{A} := (A, f)$ be an *n*-ary magma. When \mathbf{A} is essentially polyadic, strongly fair, and nondegenerate we say that \mathbf{A} is a PRPS magma (read "pseudo-RPS magma"). When \mathbf{A} is an *n*-magma of order $m \in \mathbb{N}$ with these properties we say that \mathbf{A} is a PRPS(m, n) magma. We also use PRPS and PRPS(m, n) to indicate the classes of such magmas.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Theorem

Let $\mathbf{A} \in \mathsf{PRPS}(m, n)$ and let $\varpi(m)$ denote the least prime dividing m. We have that $n < \varpi(m)$. Conversely, for each pair (m, n) with $m \neq 1$ such that $n < \varpi(m)$ there exists such a magma.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

We need $m \mid \text{gcd}\left(\left\{\binom{m}{2}, \ldots, \binom{m}{n}\right\}\right)$.

Definition (RPS magma)

Let $\mathbf{A} := (A, f)$ be an *n*-ary magma. When \mathbf{A} is conservative, essentially polyadic, strongly fair, and nondegenerate we say that \mathbf{A} is an RPS *magma*. When \mathbf{A} is an *n*-magma of order *m* with these properties we say that \mathbf{A} is an RPS(m, n) magma. We also use RPS and RPS(m, n) to indicate the classes of such magmas.

Both the original game of rock-paper-scissors and the game rock-paper-scissors-Spock-lizard are RPS magmas. The French variant of rock-paper-scissors is not even a PRPS magma.

- We now show how to construct a game for three players.
- This will be a ternary RPS magma $(A, f: A^3 \rightarrow A)$.
- Since n = 3 in this case and we require that n < ∞(m) we must have that |A| ≥ 5.</p>
- \blacksquare Our construction will use the left-addition action of \mathbb{Z}_5 on itself.
- We will produce an operation $f: \mathbb{Z}_5^3 \to \mathbb{Z}_5$ which is essentially polyadic with w + f(x, y, z) = f(w + x, w + y, w + z) for any $w \in \mathbb{Z}_5$.
- Thus, we need only define f on a representative of each orbit of $\binom{\mathbb{Z}_5}{1}$, $\binom{\mathbb{Z}_5}{2}$, and $\binom{\mathbb{Z}_5}{3}$ under this action of \mathbb{Z}_5 .

First we list the orbits of $\binom{\mathbb{Z}_5}{1}$, $\binom{\mathbb{Z}_5}{2}$, and $\binom{\mathbb{Z}_5}{3}$ under this action of $\mathbb{Z}_5.$

0	01	02	012	013
1	12	13	123	124
2	23	24	234	230
3	34	30	340	341
4	40	41	401	402

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Next, we choose a representative for each orbit, say the first one in each row of this table.

0	01	02	012	013
1	12	13	123	124
2	23	24	234	230
3	34	30	340	341
4	40	41	401	402

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Choose from each representative a particular element. For example, if our representative is 013 we may choose 0 as our special element. We also could have chosen 1 or 3, but not 2 or 4.

$0\mapsto 0$	$01\mapsto 1$	$02 \mapsto 0$	$012 \mapsto 0$	$013\mapsto 0$
1	12	13	123	124
2	23	24	234	230
3	34	30	340	341
4	40	41	401	402

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Use the left-addition action of \mathbb{Z}_5 to extend these choices to all members of $\binom{\mathbb{Z}_5}{1}$, $\binom{\mathbb{Z}_5}{2}$, and $\binom{\mathbb{Z}_5}{3}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We can read off a definition for the operation $f: \mathbb{Z}_5^3 \to \mathbb{Z}_5$ from this table. For example, we take $24 \mapsto 2$ to indicate that

$$f(2,4,4) = f(4,2,4) = f(4,4,2) = f(4,2,2) = f(2,4,2) = f(2,2,4) = 2.$$

$0\mapsto0$	$01\mapsto 1$	$02 \mapsto 0$	$012\mapsto 0$	$013\mapsto 0$
$1\mapsto 1$	$12\mapsto 2$	$13\mapsto 1$	$123\mapsto 1$	$124\mapsto 1$
$2\mapsto 2$	$23\mapsto 3$	$24 \mapsto 2$	$234 \mapsto 2$	$230\mapsto 2$
$3\mapsto 3$	$34\mapsto 4$	$30 \mapsto 3$	$340 \mapsto 3$	$341\mapsto 3$
$4\mapsto 4$	$40\mapsto 0$	$41\mapsto 4$	$401\mapsto 4$	$402\mapsto 4$
		1	1	

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Cayley table for the 3-magma $\mathbf{A} := (\mathbb{Z}_5, f)$ obtained from this choice of f is given below.

0	0	1	2	3	4	1	0	1	2	3	4	2	0	1	2	3	4
0	0	1	0	3	0	0	1	1	0	0	4	0	0	0	0	2	4
1	1	1	0	0	4	1	1	1	2	1	4	1	0	2	2	1	1
2	0	0	0	2	4	2	0	2	2	1	1	2	0	2	2	3	2
3	3	0	2	3	3	3	0	1	1	1	3	3	2	1	3	3	2
4	0	4	4	3	0	4	4	4	1	3	4	4	4	1	2	2	2
			3	0	1	2	3	4	4	0	1	2	3	4			
			0	3	0	2	3	3	0	0	4	4	3	0			
			1	0	1	1	1	3	1	4	4	1	3	4			
			2	2	1	3	3	2	2	4	1	2	2	2			
			3	3	1	3	3	4	3	3	3	2	4	4			
			4	3	3	2	4	4	4	0	4	2	4	4			

Definition (α -action magma)

Fix a group **G**, a set A, and some n < |A|. Given a regular group action α : **G** \rightarrow **Perm**(*A*) such that each of the *k*-extensions of α is free for $1 \le k \le n$ let $\Psi_k \coloneqq \left\{ \operatorname{Orb}(U) \mid U \in \binom{A}{k} \right\}$ where $\operatorname{Orb}(U)$ is the orbit of U under α_k . Let $\beta := \{\beta_k\}_{1 \le k \le n}$ be a sequence of choice functions $\beta_k: \Psi_k \to {\binom{A}{k}}$ such that $\beta_k(\psi) \in \psi$ for each $\psi \in \Psi_k$. Let $\gamma := \{\gamma_k\}_{1 \le k \le n}$ be a sequence of functions $\gamma_k: \Psi_k \to A$ such that $\gamma_k(\overline{\psi}) \in \beta_k(\psi)$ for each $\psi \in \Psi_k$. Let g: Sb_{<n}(A) \rightarrow A be given by $g(U) := (\alpha(s))(\gamma_k(\psi))$ when $U = (\alpha_k(s))(\beta_k(\psi))$. Define $f: A^n \to A$ by $f(a_1, \ldots, a_n) := g(\{a_1, \ldots, a_n\})$. The α -action magma induced by (β, γ) is $\mathbf{A} := (A, f)$.

Theorem

Let **A** be an α -action magma induced by (β, γ) . We have that **A** \in RPS.

Definition (Regular RPS magma)

Let **G** be a nontrivial finite group and fix $n < \varpi(|G|)$. We denote by **G**_n(β, γ) the left-multiplication-action *n*-magma induced by (β, γ) , which we refer to as a *regular* RPS *magma*.

Definition (Pointed hypergraph)

A pointed hypergraph $\mathbf{S} := (S, \sigma, g)$ consists of a hypergraph (S, σ) and a map $g: \sigma \to S$ such that for each edge $e \in \sigma$ we have that $g(e) \in e$. The map g is called a *pointing* of (S, σ) .

Definition (*n*-complete hypergraph)

Given a set S we denote by \mathbf{S}_n the *n*-complete hypergraph whose vertex set is S and whose edge set is $\bigcup_{k=1}^n {S \choose k}$.

Definition (Hypertournament)

An *n*-hypertournament is a pointed hypergraph $\mathbf{T} := (T, \tau, g)$ where $(T, \tau) = \mathbf{S}_n$ for some set *S*.

U	0	1	2	01	12	23	34	40	02	13	24	30	41
g(U)	0	1	2	1	2	3	4	0	0	1	2	3	4
U	01	2	123	234	34	40	401	013	124	23	30	341	402
g(U)	0		1	2		3	4	0	1		2	3	4
RPS(5, 3) example													

Definition (Hypertournament magma)

Given an *n*-hypertournament $\mathbf{T} := (T, \tau, g)$ the hypertournament magma obtained from **T** is the *n*-magma $\mathbf{A} := (T, f)$ where for $u_1, \ldots, u_n \in T$ we define

$$f(u_1,\ldots,u_n) \coloneqq g(\{u_1,\ldots,u_n\}).$$

Definition (Hypertournament magma)

A hypertournament magma is an *n*-magma which is conservative and essentially polyadic.

- Tournaments are the n = 2 case of a hypertournament.
- Hedrlín and Chvátal introduced the n = 2 case of a hypertournament magma in 1965.
- There has been a lot of work on varieties generated by tournament magmas. See for example the survey by Crvenković et al. (1999).
- There are algebraic motivations for what follows, but I won't get into them now.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition (Regular balanced hypertournament)

We refer to a hypertournament $\mathbf{T} := (T, \tau, g)$ as a *regular balanced* hypertournament when the hypertournament magma of \mathbf{T} is a regular RPS magma.

It would be very nice if each finite *n*-hypertournament embedded into a finite regular balanced hypertournament.

This turns out to be the case.

An embedding result

 Note that in a regular binary RPS magma G₂(β, γ) we have that

$$f(e,x) = xf(x^{-1},e)$$

so exactly one of f(e, x) = e or $f(x^{-1}, e) = e$ holds.

- Note also that the orbit of $\{x, y\}$ contains $\{e, x^{-1}y\}$ and $y^{-1}x$, e, where $x^{-1}y$ and $y^{-1}x$ are inverses.
- We need then only define a map λ specifying for each pair of inverses {x, x⁻¹} whether f(e, x) = e or f(e, x⁻¹) = e in order to specify G₂(β, γ).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

■ We can think of \u03c8({x,x⁻¹}) as choosing the «positive direction» with respect to x and x⁻¹.

In order to do this in general we need an *n*-ary analogue of inverses.

Definition (Obverse *k*-set)

Given n > 1, a nontrivial finite group **G** with $n < \varpi(|G|)$, $1 \le k \le n-1$, and $U, V \in \binom{G \setminus \{e\}}{k}$ we say that V is an *obverse* of Uwhen $U = \{a_1, \ldots, a_k\}$ and there exists some $a_i \in U$ such that $V = \{a_i^{-1}\} \cup \{a_i^{-1}a_j \mid i \ne j\}$. We denote by Obv(U) the set consisting of all obverses V of U, as well as U itself.

The obverses of a set U are the nonidentity elements in the members of $Orb(U \cup \{e\}) \setminus (U \cup \{e\})$ which contain e.

In order to specify $\mathbf{G}_n(\beta, \gamma)$ it suffices to choose the member $\{a_1, \ldots, a_k\}$ of each collection of obverses for which $f(e, \ldots, e, a_1, \ldots, a_k) = e$.

Definition (*n*-sign function)

Given n > 1 and a nontrivial group **G** with $n < \varpi(|G|)$ let $\text{Sgn}_n(\mathbf{G})$ denote the set of all choice functions on

$$\left\{ \left. \mathsf{Obv}(\mathit{U}) \; \middle| \; (\exists k \in \{1, \ldots, n-1\}) \left(\mathit{U} \in \binom{\mathsf{G} \setminus \{e\}}{k} \right) \right\}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

We refer to a member $\lambda \in \text{Sgn}_n(\mathbf{G})$ as an *n-sign function* on \mathbf{G} .

We then write $\mathbf{G}_n(\lambda)$ instead of $\mathbf{G}_n(\beta, \gamma)$.

An embedding result

- Now we can give an embedding of any finite hypertournament into a finite regular balanced hypertournament.
- Consider a finite hypertournament $\mathbf{T} \coloneqq (T, \tau, g)$.
- Take $\mathbf{G} := \bigoplus_{u \in \mathcal{T}} \mathbb{Z}_{\alpha_u}$ where $n < \varpi(\alpha_u)$ and $\mathbb{Z}_{\alpha_u} = \langle u \rangle$.
- We define an *n*-sign function $\lambda \in \text{Sgn}_n(\mathbf{G})$.
- When $g({u_1, \ldots, u_k}) = u_1$ we define

$$\lambda(\mathsf{Obv}(\{ u_i - u_1 \mid i \neq 1 \})) := \{ u_i - u_1 \mid i \neq 1 \}.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Any values may be chosen for other orbits.
- The *n*-hypertournament corresponding to G_n(λ) contains a copy of T.

An embedding result

If we want a class of finite regular balanced hypertournaments in which any finite hypertournament embeds, we need only use magmas of the form G_n(λ) where:

I
$$\mathbf{G} = \mathbb{Z}_{\kappa(n)}^{m}$$
 where $\kappa(n)$ is the least prime strictly greater than n or

2
$$\mathbf{G} = \mathbb{Z}_{\alpha(m)}$$
 where $\alpha(m) := \prod_{k=\ell}^{m+\ell-1} p_k$ where p_k is the k^{th} prime and $\kappa(n) = p_\ell$.

 In particular, every tournament of order *m* embeds into the tournament corresponding to some regular RPS magma of the form (Z₃^m)₂(λ).

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

This means that any tournament of order *m* embeds into some balanced tournament of order 3^m.

Definition (Balanced hypertournament)

We say that a hypertournament T is *balanced* when the hypertournament magma of T is an RPS magma.

 Let h_n(m) denote the least natural such that each n-hypertournament of order m is contained in some balanced n-hypertournament of order h_n(m).

- ロ ト - 4 回 ト - 4 □

- Our previous observation was that $h_2(m) \leq 3^m$.
- We can do much better than this.

An embedding result

Proposition

Every tournament of order m embeds into a balanced tournament of order 2m + 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(I drew a picture to prove this when I gave the talk.)

Proposition

Every tournament of order m embeds into a balanced tournament of order 2m + 1.

- One can show by example that $h_2(m) \ge 2m 1$.
- A similar construction to the one given previously shows that $h_2(m) \le 2m 1$ so $h_2(m) = 2m 1$.
- I only produced the construction given for general hypertournaments once I found that I couldn't see how to generalize the doubling construction from the n = 2 case.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It would be interesting to know whether the argument generalizes.

An embedding result

- By the general embedding result we know that $h_n(m) \leq \kappa(n)^m$.
- For *n* > 2 is this the best bound possible?
- Are there some easy examples like in the n = 2 case which give a lower bound?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Thank you.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?