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Introduction

I have been an instructor/organizer of an annual data science
and machine learning REU at the University of Rochester for
several years now.
In the the 2021 iteration of this program, I ran a project
which led to the preprint I’m discussing today.
This year, I began work on a sequel with a new group of
students.

https://people.math.rochester.edu/faculty/iosevich/stemforall2021.html
https://people.math.rochester.edu/faculty/iosevich/stemforall2023.html
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Introduction

You can find the preprint “Discrete neural nets and
polymorphic learning” at https://arxiv.org/abs/2308.00677.
Relevant code appears at
https://github.com/caten2/Tripods2021UA.

https://arxiv.org/abs/2308.00677
https://github.com/caten2/Tripods2021UA
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Talk outline

Universal algebra and universal approximation
Discrete neural nets
Polymorphisms
Example: binary images
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Universal algebra and universal approximation

Some time during the 2020-2021 academic year, I noticed that
some early results in universal approximation for neural nets
(name Cybenko’s from the 1980s) were extremely similar to
the some results on primality of random finite algebras in
universal algebra (namely Murskiĭ’s from the 1970s).
You can find the original video pitch where I propose
exploiting this similarity at
https://www.youtube.com/watch?v=nr0KbcloYW4.

https://www.youtube.com/watch?v=nr0KbcloYW4
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Universal algebra and universal approximation

The idea was to use operations on a finite set instead of
continuous activation functions.
What my students and I quickly realized, however, is that this
unrestricted hypothesis class led to overfitting much faster
than in the continuous case.
We found that we could do a lot better by only using
activation functions which were polymorphisms of a relevant
relational structure.
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Discrete neural nets

Definition (Neural net)
A neural net (V1, . . . ,Vr,E,Φ) with r layers consists of

1 a finite digraph (V,E) (the architecture of the neural net) and
2 for each v ∈ V \V1 a function Φ(v):Rρ(v) → R (the activation

function of v)
where

1 V :=
⋃r

i=1 Vi,
2 the only edges in E are from vertices in Vi to vertices in Vi+1

for i < r,
3 ρ(v) is the indegree of v in (V,E), and
4 if i ̸= r then every vertex v ∈ Vi has nonzero outdegree.
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Discrete neural nets

A typical neural net. A node vij ∈ Vi is called a neuron in
layer i. We will denote Φ(vij) by ϕij.

x1

x2

x3

ϕ21

ϕ22

ϕ23

ϕ24

ϕ31

ϕ32

We think of the labels xj as variables.
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Discrete neural nets

Definition (Neural net)
A discrete neural net (V1, . . . ,Vr,E,Φ) with r layers on a finite set
A consists of

1 a finite digraph (V,E) (the architecture of the neural net) and
2 for each v ∈ V \ V1 a function Φ(v):Aρ(v) → A (the activation

function of v)
where

1 V :=
⋃r

i=1 Vi,
2 the only edges in E are from vertices in Vi to vertices in Vi+1

for i < r,
3 ρ(v) is the indegree of v in (V,E), and
4 if i ̸= r then every vertex v ∈ Vi has nonzero outdegree.
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Polymorphisms

Definition (Structure, universe, basic operations/relations)
A structure A := (A,F,Θ) conisists of a set A (the universe or
underlying set of the structure) as well as indexed collections
F := {fi}i∈I and Θ := {θj}j∈J of operations on A (the basic
operations of A) and of relations on A (the basic relations of A).
We require that the index sets I and J be disjoint.
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Polymorphisms

Definition (Homomorphism (of structures))
Given structures A := (A,F,Θ) and B := (B,G,Ψ) where
F := {fi}i∈I, G := {gi}i∈I, Θ := {θj}j∈J, and Ψ := {ψj}j∈J, both of
the same signature ρ: I ∪ J → N, we say that a function h:A → B
is a homomorphism from A to B when h: (A,F) → (B,G) is a
homomorphism of algebras and for each j ∈ J we have for all
a1, . . . , aρ(j) ∈ A that if

(a1, . . . , aρ(j)) ∈ θj

then
(h(a1), . . . , h(aρ(j))) ∈ ψj.
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Polymorphisms

Definition (Polymorphism)
Given a structure A we say that a homomorphism f:An → A is a
polymorphism of A.

For example, a group homomorphism f:Zn → Z is a
polymorphism of the group Z.
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Example: binary images

Definition (Hamming graph)
Given n ∈ N we define the n-Hamming graph to be

Hamn := (An,
{
(a1, a2) ∈ A2

n
∣∣ d(a1, a2) ≤ 1

}
)

where An is the set of all n × n images consisting of black and
white pixels only and d is the Hamming distance.
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Example: binary images

Endomorphisms and automorphisms of Hamn are easy to
come by.
The dihedral group acts on Hamn.
Any bitwise operation with a fixed image will yield an
endomorphism of Hamn.
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Example: binary images

Higher-arity polymorphisms are harder to come by.
These are graph homomorphisms

f:Hamk
n → Hamn .
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Example: binary images

Definition (Multi-linear indicator)
Given b ∈ Bn and c ∈ Ak

n the multi-linear indicator polymorphism
for (b, c) is the map gb,c:Ak

n → An given by

gb,c(a1, . . . , ak) :=

( k∏
i=1

ai · ci

)
b

where x · y :=
∑

i,j xijyij denotes the standard dot product in F[n]2
2 .
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Example: binary images

The preprint contains a discussion of some even more
involved/interesting polymorphisms.
I am working with this year’s group of students to extend
these constructions to higher-arity relations.
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