Quasigroups, manifolds, and the completion of partial Latin hypercubes

Charlotte Aten (joint work with Semin Yoo)

University of Denver

Rocky Mountain Algebraic Combinatorics Seminar 2024 February 9

Introduction

■ In the 2010s Herman and Pakianathan introduced a functorial construction of closed surfaces from noncommutative finite groups.

- Semin Yoo and I decided to produce an n-dimensional generalization.
- The two main challenges in doing this were finding an appropriate analogue of noncommutative groups and in desingularizing the n-dimensional pseudomanifolds which arose at the first stage of our construction.
- Ultimately we found that every orientable triangulable manifold could be manufactured in the manner we described.

Introduction

■ Our preprint "Orientable triangulable manifolds are essentially quasigroups" may be found at https://arxiv.org/abs/2110.05660.
■ Relevant code appears at https://github.com/caten2/SimplexBuilder.

Talk outline

- Herman and Pakianathan's construction
- Quasigroups instead of groups
- The n-ary case
- The first functor: Open serenation
- The second functor: Serenation
- The Evans Conjecture and Latin cubes

Herman and Pakianathan's construction

- Consider a set Q equipped with a binary operation $f: Q^{2} \rightarrow Q$.
- Given elements $a, b \in Q$ we can represent that $f(a, b)=c$ with a corresponding triangle.

Herman and Pakianathan's construction

- If it also happens that $d \in Q$ with $f(b, d)=c$ then we can continue our picture by adding another triangle.

Herman and Pakianathan's construction

- We may continue in this fashion, building a simplicial complex whose vertices are \underline{x} and \bar{x} for $x \in Q$ and whose facets are of the form $\{\underline{x}, \underline{y}, \overline{f(x, y)}\}$.

Herman and Pakianathan's construction

- If it happens that $f(a, b)=f(b, a)$ then we will have «two» faces with the same vertices.
- Solution: Only form facets $\{\underline{a}, \underline{b}, \overline{f(a, b)}\}$ when a and b do not commute under f.

Herman and Pakianathan's construction

- Consider the quaternion group \mathbf{G} of order 8 whose universe is $G:=\{ \pm 1, \pm i, \pm j, \pm k\}$.
- We begin by picking out all the pairs of elements $(x, y) \in G^{2}$ so that $x y \neq y x$. We call this collection $\operatorname{NCT(G).~}$
- We define $\ln (\mathbf{G})$ to be all the elements of G which are entries in some pair $(x, y) \in \operatorname{NCT}(\mathbf{G})$.
- Similarly, $\operatorname{Out}(\mathbf{G})$ is defined to be all the members of G of the form $x y$ where $(x, y) \in \operatorname{NCT}(\mathbf{G})$.

Herman and Pakianathan's construction

- In this case we have

$$
\operatorname{NCT}(\mathbf{G})=\left\{(\pm u, \pm v) \left\lvert\,\{u, v\} \in\binom{\{i, j, k\}}{2}\right.\right\}
$$

SO

$$
\ln (\mathbf{G})=\{ \pm i, \pm j, \pm k\}
$$

and

$$
\operatorname{Out}(\mathbf{G})=\{ \pm i, \pm j, \pm k\} .
$$

- From this data we form a simplicial complex (actually a 2-pseudomanifold) whose facets are of the form $\{\underline{x}, \underline{y}, \overline{x y}\}$ where $(x, y) \in \operatorname{NCT}(\mathbf{G})$.

Herman and Pakianathan's construction

- One «sheet» of this complex is pictured below.

Herman and Pakianathan's construction

- There is a partner sheet carrying the opposite orientation on the cycle formed by the input vertices.

Herman and Pakianathan's construction

- The three 4 -cycles

$$
(i, j,-i,-j),(i, k, \underline{-i},-k), \text { and }(j, \underline{k},-\underline{j},-k) .
$$

each carry an octahedron.

Herman and Pakianathan's construction

- This simplicial complex, which we call $\operatorname{Sim}(\mathbf{G})$ and Herman and Pakianathan called $X\left(Q_{8}\right)$, consists of three 2-spheres, each pair of which is glued at two points.
- Deleting these points to disjointize the spheres and filling the resulting holes yields the manifold we call $\operatorname{Ser}(\mathbf{G})$ and Herman and Pakianathan called $Y\left(Q_{8}\right)$.
- In this case $\operatorname{Ser}(\mathbf{G})$ is the disjoint union of three 2-spheres.

Quasigroups instead of groups

- We didn't need the fact that the quaternion group was associative (or had an identity element) in order to perform this construction.
- Consider now the octonion loop L of order 16 whose universe is $L:=\left\{ \pm e_{0}, \pm e_{1}, \ldots, \pm e_{7}\right\}$.
- In this case

$$
\operatorname{NCT}(\mathbf{L})=\left\{\left(\pm e_{i}, \pm e_{j}\right) \mid i \neq j \text { and } i, j \neq 0\right\} .
$$

Quasigroups instead of groups

- We can again form sheets as we did for the quaternion group G previously.

Quasigroups instead of groups

- These sheets pair up to form octahedra as before.
- We find that $\operatorname{Sim}(\mathrm{L})$ consists of twenty-one 2 -spheres which are glued together along their vertices in some manner.
- If we disjointize by deleting vertices and then fill in the resulting holes we obtain the manifold $\operatorname{Ser}(\mathrm{L})$, which is the disjoint union of twenty-one 2-spheres.

Quasigroups instead of groups

- It is an immediate corollary of the Evans Conjecture that every compact orientable surface is a component of $\operatorname{Ser}(\mathbf{Q})$ for some finite quasigroup \mathbf{Q}.
- We'll come back to this later.

The n-ary case

- We can generalize this situation to the creation of a n-dimensional pseudomanifold from an n-ary operation $f: Q^{n} \rightarrow Q$.
- The case $n=3$ is illustrative.
- Given elements $a, b, c, d \in Q$ we can represent that $f(a, b, c)=d$ with a corresponding tetrahedron.

The n-ary case

- We now have a different problem: Up to six tetrahedra could meet at the triangle $\{\underline{a}, \underline{b}, \underline{c}\}$.

The n-ary case

- Solution: Require that f is invariant under even permutations of its arguments.
- In this case, $f(a, b, c)=f(b, c, a)=f(c, a, b)$ but in general $f(a, b, c) \neq f(b, a, c)$.

The n-ary case

Definition (n-quasigroup)

An n-quasigroup is an algebra $\mathbf{Q}:=\left(Q, f: Q^{n} \rightarrow Q\right)$ such that if any $n-1$ of the variables x_{1}, \ldots, x_{n}, y are fixed the equation

$$
f\left(x_{1}, \ldots, x_{n}\right)=y
$$

has a unique solution.

- That is, the Cayley table of an n-quasigroup is a Latin n-cube.
- All n-ary groups are n-quasigroups, but n-quasigroups need not be associative.

The n-ary case

- Given any group G the n-ary multiplication

$$
f\left(x_{1}, \ldots, x_{n}\right):=x_{1} \cdots x_{n}
$$

is a quasigroup operation on G.

The n-ary case

- We say that an n-quasigroup \mathbf{Q} is commutative when for all $x_{1}, \ldots, x_{n} \in Q$ and all $\sigma \in S_{n}$ we have

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) .
$$

- We say that an n-quasigroup \mathbf{Q} is alternating when for all $x_{1}, \ldots, x_{n} \in Q$ and all $\sigma \in A_{n}$ we have

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right) .
$$

- Our "correct" analogue of the variety of groups will be the variety $A Q_{n}$ of alternating n-quasigroups.

The n-ary case

- There are nontrivial members of $A Q_{n}$ for each n, but the easiest examples are either commutative (take the n-ary multiplication for an abelian group) or infinite (the free alternating quasigroups).
- For $n \geq 3$, every alternating n-ary group is commutative.
- We tediously found the following example by hand:

The n-ary case

- Take $Z:=(\mathbb{Z} / 5 \mathbb{Z})^{3}$ and define $h: \mathbb{Z} / 5 \mathbb{Z} \times A_{3} \rightarrow \Sigma_{Z}$ by

$$
(h(k, \sigma))\left(x_{1}, x_{2}, x_{3}\right):=\left(x_{\sigma(1)}+k, x_{\sigma(2)}+k, x_{\sigma(3)}+k\right) .
$$

There are 7 members of $\operatorname{Orb}(h)$. One system of orbit representatives is:
$\{000,011,022,012,021,013,031\}$.

The n-ary case

- Let $Q:=\mathbb{Z} / 5 \mathbb{Z}$ and define a ternary operation $f: Q^{3} \rightarrow Q$ so that

$$
f\left((h(k, \sigma))\left(x_{1}, x_{2}, x_{3}\right)\right)=f\left(x_{1}, x_{2}, x_{3}\right)+k
$$

and f is defined on the above set of orbit representatives as follows.

$x y z$	$f(x, y, z)$
000	0
011	0
022	0
012	3
021	4
013	4
031	2

The n-ary case

■ We reached out to Jonathan Smith to see if anyone had studied the varieties of alternating n-quasigroups before, but it seemed that no one had.

- He did, however, give us an example which we generalized into an alternating product construction which takes an n-ary commutative quasigroup and an ($n+1$)-ary commutative quasigroup and yields an n-ary alternating quasigroup which is typically not commutative.

The n-ary case

Definition (Commuting tuple)

Given $\mathbf{Q}:=(Q, f) \in A Q_{n}$ we say that $a \in Q^{n}$ commutes (or is a commuting tuple) in \mathbf{Q} when we have for each $\sigma \in S_{n}$ that

$$
f(a)=f\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}\right) .
$$

Definition (Set of noncommuting tuples)

Given $\mathbf{Q}:=(Q, f) \in A Q_{n}$ we define the noncommuting tuples $\operatorname{NCT}(\mathbf{Q})$ of \mathbf{Q} by
$\operatorname{NCT}(\mathbf{Q}):=\left\{a \in Q^{n} \mid\right.$ a does not commute in $\left.\mathbf{Q}\right\}$.

The n-ary case

Definition (NC homomorphism)

We say that a homomorphism $h: \mathbf{Q}_{1} \rightarrow \mathbf{Q}_{2}$ of alternating quasigroups is an NC homomorphism (or a noncommuting homomorphism) when for each $a \in \operatorname{NCT}\left(\mathbf{Q}_{1}\right)$ we have that

$$
h(a)=\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right) \in \operatorname{NCT}\left(\mathbf{Q}_{2}\right) .
$$

- All embeddings are NC homomorphisms, but there are other examples as well.
- The class of n-ary alternating quasigroups equipped with NC homomorphisms forms the category NCAQ_{n}.

The first functor: Open serenation

- Our first construction gives a functor

$$
\text { OSer }_{n}: \text { NCAQ }_{n} \rightarrow \text { SMfld }_{n}
$$

- We define

$$
\operatorname{Sim}_{n}: \mathbf{N C A Q}_{n} \rightarrow \text { PMfld }_{n}
$$

similarly to our previous examples for $n=2$ and $n=3$.

- We define $\ln (\mathbf{Q})$ to consist of all entries in noncommuting tuples of \mathbf{Q} and $\operatorname{Out}(\mathbf{Q})$ to consist of all $f\left(a_{1}, \ldots, a_{n}\right)$ where $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{NCT}(\mathbf{Q})$.

The first functor: Open serenation

- We set

$$
\operatorname{Sim}(\mathbf{Q}):=\{\underline{a} \mid a \in \ln (\mathbf{Q})\} \cup\{\bar{a} \mid a \in \operatorname{Out}(\mathbf{Q})\}
$$

and

$$
\operatorname{SimFace}(\mathbf{Q}):=\bigcup_{a \in \operatorname{NCT}(\mathbf{Q})} \operatorname{Sb}\left(\left\{\underline{a}_{1}, \ldots, \underline{a}_{n}, \overline{f(a)}\right\}\right) .
$$

- We define
$\operatorname{Sim}_{n}(\mathbf{Q}):=(\operatorname{Sim}(\mathbf{Q}), \operatorname{SimFace}(\mathbf{Q}))$.

The first functor: Open serenation

- We create $\operatorname{OSer}_{n}(\mathbf{Q})$ by taking the geometric interior of $\operatorname{Sim}_{n}(\mathbf{Q})$ (basically all but the ($n-2$)-skeleton of the geometric realization) and then equipping it with a smooth atlas.

The first functor: Open serenation

- The incidence graph of the facets of $\operatorname{Sim}(\mathbf{Q})$ for the ternary quasigroup \mathbf{Q} from the previous example is pictured.

The first functor: Open serenation

- The 1-skeleton of $\operatorname{Sim}(\mathbf{Q})$ for the ternary quasigroup \mathbf{Q} from the previous example is pictured.

The first functor: Open serenation

- One may verify that $\operatorname{OSer}(\mathbf{Q})$ is a 3 -sphere minus the graph pictured previously, which is homotopy equivalent to the wedge sum of 21 circles.

The second functor: Serenation

- For any alternating quasigroup \mathbf{Q} we may equip $\operatorname{OSer}(\mathbf{Q})$ with a Riemannian metric in a functorial manner which makes OSer(Q) flat.
- We then define a Euclidean metric completion functor

EuCmplt: Riem $_{n} \rightarrow$ Mfld $_{n}$

which assigns to a Riemannian manifold (\mathbf{M}, g) the topological manifold consisting of all points in the metric completion of \mathbf{M} which are locally Euclidean.

The second functor: Serenation

■ The serenation functor

$$
\text { Ser }_{n}: \text { NCAQ }_{n} \rightarrow \text { Mfld }_{n}
$$

is given by

$$
\operatorname{Ser}(\mathbf{Q}):=\operatorname{EuCmplt}(\operatorname{OSer}(\mathbf{Q}), g)
$$

where g is the standard metric on $\operatorname{OSer}(\mathbf{Q})$.

- In the previous example of the ternary quasigroup \mathbf{Q} we find that $\operatorname{Ser}_{3}(\mathbf{Q})$ is the 3 -sphere.

The second functor: Serenation

Definition (Serene manifold)
We say that a connected orientable n-manifold \mathbf{M} is serene when there exists some alternating n-quasigroup \mathbf{Q} such that \mathbf{M} is a component of $\operatorname{Ser}(\mathbf{Q})$.

The second functor: Serenation

Theorem (A., Yoo (2021))
Every connected orientable triangulable n-manifold is serene.

The second functor: Serenation

Theorem (A., Yoo (2021))
Every connected orientable triangulable n-manifold is serene.

- We will give a proof by pictures in the dimension 2 case.
- Suppose that \mathbf{M} is such a 2 -manifold with a fixed triangulation and compatible orientation.

The second functor: Serenation

Theorem (A., Yoo (2021))
Every connected orientable triangulable n-manifold is serene.

- Perform the elementary subdivision of each facet of \mathbf{M}.

The second functor: Serenation

Theorem (A., Yoo (2021))
Every connected orientable triangulable n-manifold is serene.

- The appropriate choice of alternating n-quasigroup \mathbf{Q} has generators including $\{a, b, c, d\}$ and relations $d=f(a, b)=f(b, c)=f(c, a)$.

The Evans Conjecture and Latin cubes

- In the same spirit, we might ask whether every compact orientable triangulable manifold arises as a component of $\operatorname{Ser}(\mathbf{Q})$ for some n-quasigroup \mathbf{Q}.
- This would be implied by a generalization of the Evans Conjecture for higher-dimensional Latin cubes.

The Evans Conjecture and Latin cubes

Definition (Partial Latin cube)
Given a set A and some $n \in \mathbb{N}$ we say that $\theta \subset A^{n+1}$ is a partial Latin n-cube when for each $i \in[n]$ and each

$$
a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n+1} \in A^{n}
$$

there exists at most one $a_{i} \in A$ so that

$$
\left(a_{1}, \ldots, a_{n+1}\right) \in \theta
$$

The Evans Conjecture and Latin cubes

- Evans conjectured that each partial Latin square (i.e. a partial Latin cube $\theta \subset A^{2+1}$) with $|A|=k$ and $|\theta| \leq k-1$ could be filled in so as to obtain a complete Latin square $\psi \subset A^{3}$ with $\theta \subset \psi$ and $|\psi|=k^{2}$.
- This was proven to be true by Smetaniuk in 1981.
- Similar results are known for special classes of higher-dimensional Latin cubes.

The Evans Conjecture and Latin cubes

- In general a complete Latin n-cube is the graph of an n-quasigroup operation.
- We say that a partial Latin n-cube is alternating when we have for each $\alpha \in A_{n}$ that if

$$
\left(a_{1}, \ldots, a_{n}, b_{1}\right) \in \theta
$$

and

$$
\left(a_{\alpha(1)}, \ldots, a_{\alpha(n)}, b_{2}\right) \in \theta
$$

then $b_{1}=b_{2}$.

- Given a finite partial alternating Latin cube $\theta \subset A^{n+1}$ does there always exist a finite complete alternating Latin cube $\psi \subset B^{n+1}$ such that $\theta \subset \psi ?$

The Evans Conjecture and Latin cubes

- If we could prove this, then we would know that the data on how to build every compact orientable triangulable manifold could be obtained from some finite alternating n-quasigroup.
- I have recently obtained a copy of Charles C. Lindner and Trevor Evans's "Finite Embedding Theorems for Partial Designs and Algebras", which I hope will provide some insight, but to my knowledge this problem is still open.

Thank you！

