Multiplayer rock-paper-scissors

Charlotte Aten

University of Rochester

2020 November 7

(ロ)、(型)、(E)、(E)、 E) の(()

Introduction

- In the summer of 2017 I lived in a cave in Yosemite National Park.
- While there I wanted to explain to my friends that I study abstract algebra.
- I realized that rock-paper-scissors was a particularly simple way to do that.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

We will view the game of RPS as a magma $\mathbf{A} := (A, f)$. We let $A := \{r, p, s\}$ and define a binary operation $f: A^2 \to A$ where f(x, y) is the winning item among $\{x, y\}$.

	r	р	5	
r	r	р	r	
р	p	р	5	
S	r	5	5	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction

I also realized that I wanted to be able to play with many of my friends at the same time.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Naturally, this led me to study the varieties generated by hypertournament algebras.

Properties of RPS

The game RPS is

- conservative,
- essentially polyadic,
- 3 strongly fair, and
- 4 nondegenerate.

These are the properties we want for a multiplayer game, as well.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Suppose we have an *n*-ary magma $\mathbf{A} := (A, f)$ where $f: A^n \to A$.
- The selection game for **A** has *n* players, p_1, p_2, \ldots, p_n .
- Each player p_i simultaneously chooses an item $a_i \in A$.

The winners of the game are all players who chose f(a₁,..., a_n).

- We say that an operation f: Aⁿ → A is conservative when for any a₁,..., a_n ∈ A we have that f(a₁,..., a_n) ∈ {a₁,..., a_n}.
- We say that A is conservative when each round has at least one winning player.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- We say that an operation $f: A^n \to A$ is essentially polyadic when there exists some $g: Sb(A) \to A$ such that for any $a_1, \ldots, a_n \in A$ we have $f(a_1, \ldots, a_n) = g(\{a_1, \ldots, a_n\})$.
- We say that A is essentially polyadic when a round's winning item is determined solely by which items were played, not taking into account which player played which item or how many players chose a particular item (as long at it was chosen at least once).

- Let A_k denote the members of Aⁿ which have k distinct components for some k ∈ N.
- We say that f is strongly fair when for all $a, b \in A$ and all $k \in \mathbb{N}$ we have $|f^{-1}(a) \cap A_k| = |f^{-1}(b) \cap A_k|$.
- We say that A is strongly fair when each item has the same chance of being the winning item when exactly k distinct items are chosen for any k ∈ N.

- We say that f is nondegenerate when |A| > n.
- In the case that |A| ≤ n we have that all members of A_{|A|} have the same set of components.
- If A is essentially polyadic with |A| ≤ n it is impossible for A to be strongly fair unless |A| = 1.

The French version of RPS adds one more item: the well. This game is not strongly fair but is conservative and essentially polyadic.

	r	р	5	W
r	r	р	r	W
р	р	р	5	р
5	r	5	5	W
W	w	р	W	W

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The recent variant Rock-Paper-Scissors-Spock-Lizard is conservative, essentially polyadic, strongly fair, and nondegenerate.

	r	р	5	V	1
r	r	р	r	V	r
р	р	р	5	р	1
5	r	5	5	V	5
V	v	р	V	V	1
1	r	1	5	Ι	1

The only "valid" RPS variants for two players use an odd number of items.

Proposition

Let **A** be a selection game with n = 2 which is essentially polyadic, strongly fair, and nondegenerate and let m := |A|. We have that $m \neq 1$ is odd. Conversely, for each odd $m \neq 1$ there exists such a selection game.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof.

We need $m \mid \binom{m}{2}$.

Definition (PRPS magma)

Let $\mathbf{A} := (A, f)$ be an *n*-ary magma. When \mathbf{A} is essentially polyadic, strongly fair, and nondegenerate we say that \mathbf{A} is a PRPS magma (read "pseudo-RPS magma"). When \mathbf{A} is an *n*-magma of order $m \in \mathbb{N}$ with these properties we say that \mathbf{A} is a PRPS(m, n) magma. We also use PRPS and PRPS(m, n) to indicate the classes of such magmas.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Theorem

Let $\mathbf{A} \in \mathsf{PRPS}(m, n)$ and let $\varpi(m)$ denote the least prime dividing m. We have that $n < \varpi(m)$. Conversely, for each pair (m, n) with $m \neq 1$ such that $n < \varpi(m)$ there exists such a magma.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof.

We need $m \mid \text{gcd}\left(\left\{\binom{m}{2}, \ldots, \binom{m}{n}\right\}\right)$.

RPS Magmas

Definition (RPS magma)

Let $\mathbf{A} := (A, f)$ be an *n*-ary magma. When \mathbf{A} is conservative, essentially polyadic, strongly fair, and nondegenerate we say that \mathbf{A} is an RPS *magma*. When \mathbf{A} is an *n*-magma of order *m* with these properties we say that \mathbf{A} is an RPS(m, n) magma. We also use RPS and RPS(m, n) to indicate the classes of such magmas.

How do I get more RPS magmas?

In the space below I will show you how to manufacture more of these magmas by hand.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Definition (α -action magma)

Fix a group **G**, a set A, and some n < |A|. Given a regular group action α : **G** \rightarrow **Perm**(*A*) such that each of the *k*-extensions of α is free for $1 \le k \le n$ let $\Psi_k \coloneqq \left\{ \operatorname{Orb}(U) \mid U \in \binom{A}{k} \right\}$ where $\operatorname{Orb}(U)$ is the orbit of U under α_k . Let $\beta := \{\beta_k\}_{1 \le k \le n}$ be a sequence of choice functions $\beta_k: \Psi_k \to {\binom{A}{k}}$ such that $\beta_k(\psi) \in \psi$ for each $\psi \in \Psi_k$. Let $\gamma := \{\gamma_k\}_{1 \le k \le n}$ be a sequence of functions $\gamma_k: \Psi_k \to A$ such that $\gamma_k(\overline{\psi}) \in \beta_k(\psi)$ for each $\psi \in \Psi_k$. Let g: Sb_{<n}(A) \rightarrow A be given by $g(U) := (\alpha(s))(\gamma_k(\psi))$ when $U = (\alpha_k(s))(\beta_k(\psi))$. Define $f: A^n \to A$ by $f(a_1, \ldots, a_n) := g(\{a_1, \ldots, a_n\})$. The α -action magma induced by (β, γ) is $\mathbf{A} := (A, f)$.

Theorem

Let **A** be an α -action magma induced by (β, γ) . We have that **A** \in RPS.

Definition (Regular RPS magma)

Let **G** be a nontrivial finite group and fix $n < \varpi(|G|)$. We denote by **G**_n(β, γ) the *L*-action *n*-magma induced by (β, γ), which we refer to as a *regular* RPS *magma*.

A Game for Three Players

0	0	1	2	3	4	1	0	1	2	3	4	2	0	1	2	3	4
0	0	1	0	3	0	0	1	1	0	0	4	0	0	0	0	2	4
1	1	1	0	0	4	1	1	1	2	1	4	1	0	2	2	1	1
2	0	0	0	2	4	2	0	2	2	1	1	2	0	2	2	3	2
3	3	0	2	3	3	3	0	1	1	1	3	3	2	1	3	3	2
4	0	4	4	3	0	4	4	4	1	3	4	4	4	1	2	2	2
			3 0 1 2 3 4	0 3 0 2 3 3 3	1 0 1 1 1 3	2 2 1 3 3 2	3 1 3 3 4	4 3 3 2 4 4	4 0 1 2 3 4	0 4 4 3 0	1 4 1 3 4	2 4 1 2 2 2	3 3 2 4 4	4 0 4 2 4 4			

(ロ)、(型)、(E)、(E)、 E) の(()

Definition (Pointed hypergraph)

A pointed hypergraph $\mathbf{S} := (S, \sigma, g)$ consists of a hypergraph (S, σ) and a map $g: \sigma \to S$ such that for each edge $e \in \sigma$ we have that $g(e) \in e$. The map g is called a *pointing* of (S, σ) .

Definition (*n*-complete hypergraph)

Given a set S we denote by \mathbf{S}_n the *n*-complete hypergraph whose vertex set is S and whose edge set is $\bigcup_{k=1}^n {S \choose k}$.

Definition (Hypertournament)

An *n*-hypertournament is a pointed hypergraph $\mathbf{T} := (T, \tau, g)$ where $(T, \tau) = \mathbf{S}_n$ for some set *S*.

U	0	1	2	01	12	23	34	40	02	13	24	30	41
g(U)	0	1	2	1	2	3	4	0	0	1	2	3	4
U	01	2	123	234	34	40	401	013	124	23	30	341	402
g(U)	0		1	2		3	4	0	1		2	3	4
RPS(5, 3) example													

Definition (Hypertournament magma)

Given an *n*-hypertournament $\mathbf{T} := (T, \tau, g)$ the hypertournament magma obtained from **T** is the *n*-magma $\mathbf{A} := (T, f)$ where for $u_1, \ldots, u_n \in T$ we define

$$f(u_1,\ldots,u_n) \coloneqq g(\{u_1,\ldots,u_n\}).$$

Definition (Hypertournament magma)

A hypertournament magma is an *n*-magma which is conservative and essentially polyadic.

- Tournaments are the n = 2 case of a hypertournament.
- Hedrlín and Chvátal introduced the n = 2 case of a hypertournament magma in 1965.
- There has been a lot of work on varieties generated by tournament magmas. See for example the survey by Crvenković et al. (1999).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition

Let n > 1. We have that $\text{RPS}_n \subsetneq \text{PRPS}_n$, $\text{RPS}_n \subsetneq \text{Tour}_n$, and neither of PRPS_n and Tour_n contains the other. Moreover, $\text{RPS}_n = \text{PRPS}_n \cap \text{Tour}_n$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

We denote by \$\mathcal{T}_n\$ the variety of algebras generated by Tour_n\$.
This is equivalent to having

$$\mathcal{T}_n = \mathsf{HSP}(\mathsf{Tour}_n) = \mathsf{Mod}(\mathsf{Id}(\mathsf{Tour}_n)).$$

■ Similarly, we define *R_n* to be the variety of algebras generated by RPS_n.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem

Let n > 1. We have that $T_n = \mathcal{R}_n$. Moreover T_n is generated by the class of finite regular RPS_n magmas.

Proof.

Every finite hypertournament can be embedded in a finite regular balanced hypertournament.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Thank you.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?