
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

A categorical semantics for neural nets

Charlotte Aten

University of Denver

2023 November 24

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Introduction

Discrete neural nets
Multicategories
Neural nets as functors
Structures
Structures as data

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

Neural nets are a biologically-inspired framework for
developing machine learning algorithms.
For example, suppose we would like to make a tool that takes
three digits as input and outputs their sum, without explicitly
coding such a function.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

We could create some input nodes x1, x2, and x3, into which
to plug our three digits.

x1

x2

x3

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

We could then add two output nodes, each of which carries an
activation function. In this case, f1 takes the values at x1 and
x2, and is supposed to give us one digit of the sum of the
input values.

x1

x2

x3

f1

f2

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

We can even make something more complicated, where f1 and
f2 get fed into another layer of activation functions, which in
turn get plugged into h1 and h2.

x1

x2

x3

f1

f2

g1

g2

g3

h1

h2

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

This whole assembly can be thought of as a network of
neurons which models the composite function

(x1, x2, x3) 7→ (h1(g1(f1(x1, x2))),

h2(g1(f1(x1, x2)), g2(f1(x1, x2), f2(x2, x3), g3(f2(x2, x3))))).

x1

x2

x3

f1

f2

g1

g2

g3

h1

h2

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

What functions should we choose for the activation functions?
If we made really smart choices ourselves, we would basically
be writing the function we decided we would be too lazy to
write.
On the other hand, if we choose any random functions, we
would likely not obtain a function that maps (a, b, c) to the
digits of a + b + c.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

Learning with neural nets means choosing some activation
functions to start, then tweaking them somehow to improve
the empirical correctness of the modeled function.
This has its own problem: overfitting.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

It is easy to train a neural net to perfectly map (1, 2, 3) to
(0, 6), (0, 3, 5) to (0, 8), and (2, 2, 3) to (0, 7), while still
totally failing to map (3, 4, 5) to (1, 2).
Often, the neural net will just take on any values outside of its
training examples.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

One way to stop this from happening is to make it impossible.
For instance, if all of our activation functions had to be linear
then our neural net could only model linear functions.
This is because linear functions are closed under composition.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

In general, if we have an object S in a category with finite
products, we can take our activation functions to be
morphisms f: Sn → S for various n. This set of morphisms, the
polymorphism clone of S, is closed under composition.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Discrete neural nets

If we choose S to be an object relevant to our learning task,
we will find that a neural net whose activation functions are
polymorphisms of S can only learn “reasonable” functions.
For instance, if we take S to be a G-set for some group G, the
polymorphisms of S are just the G-equivariant operations
f: Sn → S where

f(σx1, . . . , σxn) = σf(x1, . . . , xn)

for σ ∈ G.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multicategories

This kind of general observation suggests that neural nets
have a nice functorial description.
The appropriate functors here are functors between
multicategories, for which I will now give some background.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multicategories

Let’s think of this picture as showing us various objects, where
each one has a single “n-ary morphism” going into it.

A1

A2

A3

f1 B1

f2 B2

g1 C1

g2 C2

g3 C3

h1 D1

h2 D2

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multicategories

A multicategory C has:
a collection of objects Ob(C),
for each tuple of objects (A1, . . . ,An) and each object B, a set
of morphisms C (A1, . . . ,An;B) from (A1, . . . ,An) to B,
for each object A an identity morphism idA: (A) → A, and
a law of (generalized) composition by which we can form
morphisms such as g2[f1, f2] in our picture.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multicategories

A multicategory C must:
satisfy a generalized associative law and
have the identity laws f[id, . . . , id] = f = id[f].

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Multicategories

Operads are multicategories with only one object.
Functors between multicategories are defined analogously with
those for categories.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Neural nets as functors

If we look at our picture again, we can see that we have a
multicategory.
This kind is special because the morphisms only “go one way”.

A1

A2

A3

f1 B1

f2 B2

g1 C1

g2 C2

g3 C3

h1 D1

h2 D2

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Neural nets as functors

We’ll say that an architecture is a multicategory A where
Ob(A) is finite and there is at most one morphism in each
hom set A (A1, . . . ,An;B).
These are basically “finite multiposets”.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Neural nets as functors

Given an architecture A , we say that a functor N :A → C is
a C -valued neural net.
If C is the (multi)category of smooth manifolds and
N :A → C sends all objects to R, we get a classical neural
network.
If C is the (multi)category of G-sets for some group G and
N :A → C sends all objects to a G-set S, we get a
G-equivariant neural net.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structures

Another nice family of examples comes from graph theory.
Let Hamn,k be the Hamming graph whose nodes are k-ary
relations on [n] := {1, 2, . . . , n}.
Two nodes of Hamn,k are adjacent when their Hamming
distance from each other is at most one.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structures

In a recent preprint I described an infinite family of nontrivial
polymorphisms of Hamn,2 which can be computed efficiently.
These are good candidates for using as activation functions,
so my students and I are experimenting with them in basic
learning tasks using MNIST.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structures

In my PhD thesis, I gave a categorification of Bourbaki’s
notion of a (generalized) relational structure.
What I actually did was quite general, but I will describe a
special case that includes any reasonable finite data structure.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structures

Consider a functor ρ:I → [Set, Set].
We have a corresponding functor ρA:I → Set for each set A
where ρA(N) := (ρ(N))(A).
We think of subfunctors of ρA as structures of signature ρ
with universe A.
(There are some other technical details I am suppressing.)

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structures

There is always (under those other assumptions I’m leaving
out) a category Structρ of structures of signature ρ.
Perhaps we could consider neural nets N :A → Structρ.
Unfortunately, we would have to find polymorphisms for such
structures.
Even finding one nontrivial polymorphism is NP-hard, in
general.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structures as data

Note that we are usually not handed a structure we want to
preserve when facing a new learning task.
We are usual given finite data structures as the training
data, but understanding the relevant properties that our
neural net should preserve may be challenging.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structures as data

The Yoneda embedding is very helpful here.
Given structures A and C with universes A and C,
respectively, observe that

Structρ(C,A) ⊂ AC

is a |C|-ary relation on A.
This gives a fully faithful functor

Structρ → Structρ
Set
.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structures as data

Using this functor, we can see that there is an embedding of
Net(A , Structρ) into Net(A , Structρ

Set
).

In nice cases, we have a “truncation” (or reduct)

ψ: Structρ
Set → Structρ

′

where a ρ′-structure only has finitely many basic relations.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Structures as data

This means that if the training data for our neural nets
consists of such relational structures, we might as well think
of our training data as being vertices of the Hamming graph
Hamn,k.
In this sense, the polymorphisms of the Hamming graph are
already enough to describe a polymorphic learning algorithm
for any kind of training data one might use.

