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Introduction

In the 2010s Herman and Pakianathan introduced a functorial
construction of closed surfaces from noncommutative finite
groups.
Semin Yoo and I decided to produce an n-dimensional
generalization.
The two main challenges in doing this were finding an
appropriate analogue of noncommutative groups and in
desingularizing the n-dimensional pseudomanifolds which
arose at the first stage of our construction.
Ultimately we found that every orientable triangulable
manifold could be manufactured in the manner we described.
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Introduction

Our preprint “Orientable smooth manifolds are essentially
quasigroups” may be found at
https://arxiv.org/abs/2110.05660.
Relevant code appears at
https://github.com/caten2/SimplexBuilder.

https://arxiv.org/abs/2110.05660
https://github.com/caten2/SimplexBuilder
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Talk outline

Herman and Pakianathan’s construction
Quasigroups instead of groups
The n-ary case
The first functor: Open serenation
The second functor: Serenation
The Evans Conjecture and Latin cubes
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Herman and Pakianathan’s construction

Consider a set Q equipped with a binary operation f:Q2 → Q.
Given elements a, b ∈ Q we can represent that f(a, b) = c with
a corresponding triangle.

a b

c
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Herman and Pakianathan’s construction

If it also happens that d ∈ Q with f(b, d) = c then we can
continue our picture by adding another triangle.

a b

c

d
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Herman and Pakianathan’s construction

We may continue in this fashion, building a simplicial complex
whose vertices are x and x for x ∈ Q and whose facets are of
the form

{
x, y, f(x, y)

}
.

a b

c

de

g
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Herman and Pakianathan’s construction

If it happens that f(a, b) = f(b, a) then we will have «two»
faces with the same vertices.
Solution: Only form facets

{
a, b, f(a, b)

}
when a and b do

not commute under f.

a b

c

c
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Herman and Pakianathan’s construction

Consider the quaternion group G of order 8 whose universe is
G := {±1,±i,±j,±k}.
We begin by picking out all the pairs of elements (x, y) ∈ G2

so that xy ̸= yx. We call this collection NCT(G).
We define In(G) to be all the elements of G which are entries
in some pair (x, y) ∈ NCT(G).
Similarly, Out(G) is defined to be all the members of G of the
form xy where (x, y) ∈ NCT(G).
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Herman and Pakianathan’s construction

In this case we have

NCT(G) =

{
(±u,±v)

∣∣∣∣ {u, v} ∈
(
{i, j, k}

2

)}
so

In(G) = {±i,±j,±k}

and
Out(G) = {±i,±j,±k} .

From this data we form a simplicial complex (actually a
2-pseudomanifold) whose facets are of the form

{
x, y, xy

}
where (x, y) ∈ NCT(G).
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Herman and Pakianathan’s construction

One «sheet» of this complex is pictured below.

i j

k

−i−j
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Herman and Pakianathan’s construction

There is a partner sheet carrying the opposite orientation on
the cycle formed by the input vertices.

i j

−k

−i−j
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Herman and Pakianathan’s construction

The three 4-cycles

(i, j,−i,−j), (i, k,−i,−k), and (j, k,−j,−k).

each carry an octahedron.

i

jk

−i

−j −k
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Herman and Pakianathan’s construction

This simplicial complex, which we call Sim(G) and Herman
and Pakianathan called X(Q8), consists of three 2-spheres,
each pair of which is glued at two points.
Deleting these points to disjointize the spheres and filling the
resulting holes yields the manifold we call Ser(G) and Herman
and Pakianathan called Y(Q8).
In this case Ser(G) is the disjoint union of three 2-spheres.
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Quasigroups instead of groups

We didn’t need the fact that the quaternion group was
associative (or had an identity element) in order to perform
this construction.
Consider now the octonion loop L of order 16 whose universe
is L := {±e0,±e1, . . . ,±e7}.
In this case

NCT(L) = { (±ei,±ej) | i ̸= j and i, j ̸= 0 } .
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Quasigroups instead of groups

We can again form sheets as we did for the quaternion group
G previously.

e1 e2

e3

−e1−e2
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Quasigroups instead of groups

These sheets pair up to form octahedra as before.
We find that Sim(L) consists of twenty-one 2-spheres which
are glued together along their vertices in some manner.
If we disjointize by deleting vertices and then fill in the
resulting holes we obtain the manifold Ser(L), which is the
disjoint union of twenty-one 2-spheres.
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Quasigroups instead of groups

It is an immediate corollary of the Evans Conjecture that
every compact orientable surface is a component of Ser(Q)
for some finite quasigroup Q.
We’ll come back to this later.
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The n-ary case

We can generalize this situation to the creation of a
n-dimensional pseudomanifold from an n-ary operation
f:Qn → Q.
The case n = 3 is illustrative.
Given elements a, b, c, d ∈ Q we can represent that
f(a, b, c) = d with a corresponding tetrahedron.

a b

c

d
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The n-ary case

We now have a different problem: Up to six tetrahedra could
meet at the triangle {a, b, c}.

a b

c f(a, b, c)

f(b, c, a)f(c, a, b)

f(b, a, c)

f(a, c, b) f(c, b, a)
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The n-ary case

Solution: Require that f is invariant under even permutations
of its arguments.
In this case, f(a, b, c) = f(b, c, a) = f(c, a, b) but in general
f(a, b, c) ̸= f(b, a, c).

a b

c f(a, b, c)f(b, a, c)
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The n-ary case

Definition (n-quasigroup)
An n-quasigroup is an algebra Q := (Q, f:Qn → Q) such that if
any n − 1 of the variables x1, . . . , xn, y are fixed the equation

f(x1, . . . , xn) = y

has a unique solution.

That is, the Cayley table of an n-quasigroup is a Latin n-cube.
All n-ary groups are n-quasigroups, but n-quasigroups need
not be associative.
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The n-ary case

Given any group G the n-ary multiplication

f(x1, . . . , xn) := x1 · · · xn

is a quasigroup operation on G.
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The n-ary case

We say that an n-quasigroup Q is commutative when for all
x1, . . . , xn ∈ Q and all σ ∈ Sn we have

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

We say that an n-quasigroup Q is alternating when for all
x1, . . . , xn ∈ Q and all σ ∈ An we have

f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)).

Our “correct” analogue of the variety of groups will be the
variety AQn of alternating n-quasigroups.
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The n-ary case

There are nontrivial members of AQn for each n, but the
easiest examples are either commutative (take the n-ary
multiplication for an abelian group) or infinite (the free
alternating quasigroups).
For n ≥ 3, every alternating n-ary group is commutative.
We tediously found the following example by hand:
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The n-ary case

Take Z := (Z/5Z)3 and define h:Z/5Z× A3 → ΣZ by

(h(k, σ))(x1, x2, x3) := (xσ(1) + k, xσ(2) + k, xσ(3) + k).

There are 7 members of Orb(h). One system of orbit
representatives is:

{000, 011, 022, 012, 021, 013, 031} .



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The n-ary case

Let Q := Z/5Z and define a ternary operation f:Q3 → Q so
that

f((h(k, σ))(x1, x2, x3)) = f(x1, x2, x3) + k

and f is defined on the above set of orbit representatives as
follows.

xyz f(x, y, z)
000 0
011 0
022 0
012 3
021 4
013 4
031 2
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The n-ary case

We reached out to Jonathan Smith to see if anyone had
studied the varieties of alternating n-quasigroups before, but it
seemed that no one had.
He did, however, give us an example which we generalized
into an alternating product construction which takes an n-ary
commutative quasigroup and an (n + 1)-ary commutative
quasigroup and yields an n-ary alternating quasigroup which is
typically not commutative.
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The n-ary case

Definition (Commuting tuple)
Given Q := (Q, f) ∈ AQn we say that a ∈ Qn commutes (or is a
commuting tuple) in Q when we have for each σ ∈ Sn that

f(a) = f(aσ(1), . . . , aσ(n)).

Definition (Set of noncommuting tuples)
Given Q := (Q, f) ∈ AQn we define the noncommuting tuples
NCT(Q) of Q by

NCT(Q) := { a ∈ Qn | a does not commute in Q } .
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The n-ary case

Definition (NC homomorphism)
We say that a homomorphism h:Q1 → Q2 of alternating
quasigroups is an NC homomorphism (or a noncommuting
homomorphism) when for each a ∈ NCT(Q1) we have that

h(a) = (h(a1), . . . , h(an)) ∈ NCT(Q2).

All embeddings are NC homomorphisms, but there are other
examples as well.
The class of n-ary alternating quasigroups equipped with NC
homomorphisms forms the category NCAQn.
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The first functor: Open serenation

Our first construction gives a functor

OSern:NCAQn → SMfldn .

We define
Simn:NCAQn → PMfldn

similarly to our previous examples for n = 2 and n = 3.
We define In(Q) to consist of all entries in noncommuting
tuples of Q and Out(Q) to consist of all f(a1, . . . , an) where
(a1, . . . , an) ∈ NCT(Q).
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The first functor: Open serenation

We set

Sim(Q) := { a | a ∈ In(Q) } ∪ { a | a ∈ Out(Q) }

and
SimFace(Q) :=

⋃
a∈NCT(Q)

Sb
({

a1, . . . , an, f(a)
})

.

We define

Simn(Q) := (Sim(Q), SimFace(Q)).
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The first functor: Open serenation

We create OSern(Q) by taking the open geometric realization
of Simn(Q) (basically all but the (n − 2)-skeleton of the
geometric realization) and then equipping it with a smooth
atlas.
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The first functor: Open serenation

The incidence graph of the facets of Sim(Q) for the ternary
quasigroup Q from the previous example is pictured.

012 410

402142

021

013203

123 401 304

341031

124132

314 234

420 340

230243
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The first functor: Open serenation

The 1-skeleton of Sim(Q) for the ternary quasigroup Q from
the previous example is pictured.

0

1

2

3

4

0

1

2

3

4
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The first functor: Open serenation

One may verify that OSer(Q) is a 3-sphere minus the graph
pictured previously, which is homotopy equivalent to the
wedge sum of 21 circles.
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The second functor: Serenation

For any alternating quasigroup Q we may equip OSer(Q)
with a Riemannian metric in a functorial manner which makes
OSer(Q) flat.
We then define a Euclidean metric completion functor

EuCmplt:Riemn → Mfldn

which assigns to a Riemannian manifold (M, g) the
topological manifold consisting of all points in the metric
completion of M which are locally Euclidean.
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The second functor: Serenation

The serenation functor

Sern:NCAQn → Mfldn

is given by

Ser(Q) := EuCmplt(OSer(Q), g)

where g is the standard metric on OSer(Q).
In the previous example of the ternary quasigroup Q we find
that Ser3(Q) is the 3-sphere.
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The second functor: Serenation

Definition (Serene manifold)
We say that a connected orientable n-manifold M is serene when
there exists some alternating n-quasigroup Q such that M is a
component of Ser(Q).
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The second functor: Serenation

Theorem (A., Yoo (2021))
Every connected orientable triangulable n-manifold is serene.
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The second functor: Serenation

Theorem (A., Yoo (2021))
Every connected orientable triangulable n-manifold is serene.

We will give a proof by pictures in the dimension 2 case.
Suppose that M is such a 2-manifold with a fixed
triangulation and compatible orientation.

a b

c
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The second functor: Serenation

Theorem (A., Yoo (2021))
Every connected orientable triangulable n-manifold is serene.

Perform the elementary subdivision of each facet of M.

a b

c

d
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The second functor: Serenation

Theorem (A., Yoo (2021))
Every connected orientable triangulable n-manifold is serene.

The appropriate choice of alternating n-quasigroup Q has
generators including {a, b, c, d} and relations
d = f(a, b) = f(b, c) = f(c, a).

a b

c

d
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The Evans Conjecture and Latin cubes

In the same spirit, we might ask whether every compact
orientable triangulable manifold arises as a component of
Ser(Q) for some n-quasigroup Q.
This would be implied by a generalization of the Evans
Conjecture for higher-dimensional Latin cubes.
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The Evans Conjecture and Latin cubes

Definition (Partial Latin cube)
Given a set A and some n ∈ N we say that θ ⊂ An+1 is a partial
Latin n-cube when for each i ∈ [n] and each

a1, . . . , ai−1, ai+1, . . . , an+1 ∈ An

there exists at most one ai ∈ A so that

(a1, . . . , an+1) ∈ θ.
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The Evans Conjecture and Latin cubes

Evans conjectured that each partial Latin square (i.e. a partial
Latin cube θ ⊂ A2+1) with |A| = k and |θ| ≤ k − 1 could be
filled in so as to obtain a complete Latin square ψ ⊂ A3 with
θ ⊂ ψ and |ψ| = k2.
This was proven to be true by Smetaniuk in 1981.
Similar results are known for special classes of
higher-dimensional Latin cubes.
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The Evans Conjecture and Latin cubes

In general a complete Latin n-cube is the graph of an
n-quasigroup operation.
We say that a partial Latin n-cube is alternating when we
have for each α ∈ An that if

(a1, . . . , an, b1) ∈ θ

and
(aα(1), . . . , aα(n), b2) ∈ θ

then b1 = b2.
Given a finite partial alternating Latin cube θ ⊂ An+1 does
there always exist a finite complete alternating Latin cube
ψ ⊂ Bn+1 such that θ ⊂ ψ?
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The Evans Conjecture and Latin cubes

If we could prove this, then we would know that the data on
how to build every compact orientable triangulable manifold
could be obtained from some finite alternating n-quasigroup.
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Thank you!


