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Introduction

Background story 1: FI-module theory
Background story 2: Bourbaki’s structures
Synergies and bimodules
Isomorphism invariant polynomials
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Background story 1: FI-module theory

Our first story is quite recent, taking place mostly during the
2010s.
For some time there were known examples of phenomena
called representation stability and homological stability.
In both cases a naturally-constructed sequence of objects were
known (either representations or spaces) and while their
representations or homology groups continued to grow forever,
their descriptions «stabilized» into a recognizable pattern.
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Background story 1: FI-module theory

For example, it had been known for some time that when
n ≥ 2 we have that

H1(Confn(C);C) ∼= C(
n
2).

Since each of these cohomology groups is a Σn-module, we
can decompose H1(Confn(C);C) as a sum of irreducible
representations.
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Background story 1: FI-module theory

The significant observation here is that when n ≥ 4 we have
that

H1(Confn(C);C) = V(0)⊕ V(1)⊕ V(2)

where the V(k) are representations induced from those
corresponding to the partitions (0), (1), and (2).
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Background story 1: FI-module theory

In 2013 Church and Farb proved that this stabilization in the
names of the irreducible representations comprising
Hi(Confn(C);C) as a Σn representation occurs for each i.
Church, Ellenberg, and Farb continued to develop the relevant
theory over the next few years, which is the the theory of
FI-modules.
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Background story 1: FI-module theory

An FI-module is a functor from the category FI of finite sets
with injections as morphisms into a category Mod(R) of
modules over a commutative unital ring R.
In 2015 Church, Ellenberg, and Farb proved a Noetherianess
result for FI-modules.
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Background story 1: FI-module theory

This led to the 2019 work of Ramos and White on FI-graphs,
which are functors from the category FI to the category Grph
of graphs.
They showed that for those FI-graphs G• they identified as
vertex-stable the function

n 7→ dimR(Hi(HoCo(T,Gn);R))

where T is a fixed graph and HoCo(T,Gn) is the Hom-complex
of multi-homomorphisms of T into Gn eventually agrees with
a polynomial of degree at most |V(T)| d(i + 1) where d is the
stable degree of the vertex-stable FI-graph G•.
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Background story 1: FI-module theory

For any fixed r the FI-graph KG•,r is vertex-stable.

n 2 3 4 5

KGn,2 12

12

13

23 12 34

13 24

14 23
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Background story 1: FI-module theory

Any injection from [m] := {1, 2, . . . ,m} to [n] = {1, 2, . . . , n} is a
homomorphism from Km to Kn.

n 1 2 3 4

Kn 1 12

1

2

3

1

2

3

4

K1 K2 K3 K4
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Background story 2: Bourbaki’s structures

Our second story takes place during the twentieth century.
In writing the textbook series les Éléments de mathématique,
Bourbaki had sought to lay out in the first text of the series,
Theory of Sets a systematic description of mathematical
structures as they would appear throughout the rest of the
series.
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Background story 2: Bourbaki’s structures

Basically, they said that a structure was a set, say A, equipped
with an indexed family {fi}i∈I of relations fi where each fi was
a subset of a set which could be constructed from A by taking
Cartesian products and powersets finitely many times.
For example, a relation on A might be a subset of

A × Sb(Sb(A)× A57)× Sb(Sb(Sb(A))).
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Background story 2: Bourbaki’s structures

Bourbaki defined what we would now call morphisms of these
structures and proved several results about them, all of which
we would now consider to belong to category theory.
Once Eilenberg Mac Lane had established category theory
Grothendieck and then Cartier were asked to produce a
category theory component for the Éléments, although if
either did their contribution never made it into the texts.
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Background story 2: Bourbaki’s structures

Discussions in «La Tribu» during the 1950s seem to indicate
that Bourbaki felt much of the Éléments would have to be
rewritten in order to accommodate the new notions from
category theory.
It appeared to be difficult to synthesize the structural and
categorical viewpoints together, so the consensus became that
this task was not worth the effort.
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Thesis results

In my thesis I developed a more general theory which parallels
that of FI-modules.
Instead of a sequence of representations {Vn}n∈N of the
symmetric groups {Σn}n∈N indexed by the category FI of
finite sets with inclusions as morphisms, we consider synergies,
which are functors from an indexing (or shape) category S to
the category of groups.
Building on this, a triad of results about finite generation of
corresponding bimodules are proven.
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Thesis results

I also present one possible categorification of Bourbaki’s
concept of structure here.
The main result in this case is a generalization of a result of
Hilbert on symmetric polynomials to the setting of finite
structures.
This generalization has the perhaps surprising implication that
any first-order property of a finite structure A can be checked
by counting the number of embeddings of small substructures
B ↪→ A, where «small» is a function of the logical complexity
of the first-order property.
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Thesis results

As Bourbaki imagined, the setup for this is a little involved
and is relegated to an appendix.
That appendix also contains a Yoneda-style embedding
theorem which shows that categories of structures built from
a set A may always be viewed as having basic relations of the
form An as in model theory.
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Synergies and bimodules

Definition (Synergy)
We refer to a functor G:S → Grp as a synergy of shape S or as an
S-synergy.

For s ∈ S we typically write Gs rather than G(s) and given a
morphism f: s1 → s2 in S we simply write f̆ rather than G(f).



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Synergies and bimodules

Many familiar families of groups form synergies.
The symmetric and alternating groups both form synergies
indexed by the natural numbers N.
The general linear groups GLn(F) may be viewed as a synergy
indexed by N2 by taking

(GL(F))i,j := GLi+j(F).
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Synergies and bimodules

Definition (Unspooling of a synergy)
Given an S-synergy G the unspooling of G is the category G whose
objects are the elements of S, whose morphism sets are

HomG(s1, s2) := {σfτ | σ, τ ∈ Gs2 and f: s1 → s2 } ,

whose composition map

◦: HomG(s2, s3)× HomG(s1, s2) → HomG(s1, s3)

is given by

(σ3gτ3) ◦ (σ2fτ2) = σ3ğ(σ2)(g ◦ f)ğ(τ2)τ3,

and whose identity morphisms are those of the form eιe.
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Synergies and bimodules

Definition (Synergy biobject)
Given a synergy G and a category C we refer to a functor
V:G → C as a G-biobject in C .

Definition (Synergy bimodule category)
Given a commutative unital ring R and a synergy G we refer to
G Mod(R) as the category of G-bimodules (over R).

A symmetric synergy bimodule is an FI-module with a
compatible action of the symmetric groups on the right.
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Synergies and bimodules

Definition (Regular synergy bimodule)
Given an S-synergy G, a unital commutative ring R, and an S-set
Ψ we define the regular G-bimodule

RG[Ψ]:G → Mod(R)

by
(RG[Ψ])s := R[{σψ | ψ ∈ Ψs and σ ∈ Gs }]

and
σ2fτ2(σ1ψ) := σ2f̆(σ1)τ2f̆(ψ).
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Synergies and bimodules

Definition (Finitely generated synergy bimodule)
We say that a G-bimodule V:G → Mod(R) is finitely generated
when there exists an epimorphism Fr(Ψ) ↠ V where Ψ is finite.

A finitely generated synergy bimodule is thus determined by
elements lying in a certain collection of modules Vs.
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Synergies and bimodules

Definition (Augmentation ideal)
Given a G-bimodule V:G → Mod(R) the augmentation ideal
ΘV:G → Mod(R) is the sub-G-bimodule of V with (ΘV)s defined
to be the sub-R-module of Vs generated by

{ v − σ̄vτ̄ | v ∈ Vs, σ, τ ∈ Gs } .
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Synergies and bimodules

Definition (Escalation)
Given a category S and an endofunctor ξ̊:S → S we refer to a
natural transformation ξ: idS → ξ̊ as an escalation of S.

Escalations of a poset are isotone maps.
Escalations of a group are inner automorphisms. (Compare
with the work of Cohen et al.)
The escalations of a category always form a monoid under
horizontal composition.
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Synergies and bimodules

Definition (Escalation ring)
Given a category S and a unital commutative ring R we denote by
R Esc(S) the escalation ring (of S over R), which is the monoid
ring of Esc(S) over R.

Definition (Ring of a set of escalations)
Given a category S and some Ξ ⊂ Esc(S) we denote by R{Ξ} the
subring of R Esc(S) generated by R ∪ Ξ.
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Synergies and bimodules

Definition (Coinvariants module)
Let G be an S-synergy which has a generating set Ξ and let R be a
unital commutative ring. Given a G-bimodule V:G → Mod(R) the
Ξ-coinvariants module ΦV is an S-graded R{Ξ}-module whose sth

component is
(ΦV)s := Vs/(ΘV)s

and for which ξ ∈ Ξ acts as a map

ξ̇s: (ΦV)s → (ΦV)ξ̊(s)

which is given by

ξ̇s(v/(ΘV)s) := ξ̄s(v)/(ΘV)ξ̊(s).
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Synergies and bimodules

Definition (Noetherian category)
Given a category S which is finitely generated by (Ξ,B) and a
unital commutative ring R we say that S is (R,Ξ)-Noetherian (or
Noetherian (over R with respect to Ξ)) when R{Ξ} is a
Noetherian ring.
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Synergies and bimodules

Proposition (A. 2022)
If G is a synergy then for any finite S-set Ψ we have that RG[Ψ] is
finitely generated. If G is NFG by (Ω,Ω′,B) and Ψ is finite with
finite generating set Ψ′ whose associated base is B then ΘG[Ψ] is
finitely generated.

We get a relatively explicit bound on the size of a finite
generating set for ΘG[Ψ] since we have that∣∣∣ΨΩ

∣∣∣ ≤ ∣∣∣(Ψ′)Ω
′
∣∣∣ ≤ 2

∑
s∈B

∣∣Ψ′ ∩Ψs
∣∣ ∣∣Ω′ ∩ Ωs

∣∣ .
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Synergies and bimodules

Theorem (A. 2022)
Suppose that G is an S-synergy and that V:G → Mod(R) is a
G-bimodule with W ≤ V. If

1 ΘW is finitely generated with witness qΘ:Fr(ΨΘ) ↠ V where
ΨΘ is finite with finite generating set Ψ′

Θ whose associated
base is BΘ,

2 Q ≤ R,
3 all the groups Gs are torsion,
4 S is (R,Ξ)-Noetherian,
5 V is finitely generated with witness q:Fr(Ψ) ↠ V where Ψ is

finite with finite generating set Ψ′ whose associated base is B,
6 S is generated by (Ξ,B)

then W is finitely generated.
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Synergies and bimodules

Theorem (A. 2022)
Sub-Σ-bimodules of CΣ[1] are finitely generated.
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Isomorphism invariant polynomials

A finite structure is a pair A := (A, {fi}i∈I) where A is a finite
set and the fi form an I-indexed sequence of relations
fi ⊂ Aρ(i) where the function ρ: I → N is the signature of A.
We denote by Structρ the evident category and by StructρA
the collection of all structures of the same signature on the
set A, which we call a kinship class.
The class Structρ of all structures with signature ρ is likewise
called a similarity class.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Isomorphism invariant polynomials

Definition (Substructure)
Given a structure A of signature ρ we refer to a subobject of A in
Structρ as a substructure of A.
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Isomorphism invariant polynomials

Definition (Finite signature)
We say that a signature ρ:I → Fun(Set,Set) is finite when I
has finitely many objects and finitely many morphisms and for each
N ∈ Ob(I ) and each finite set A we have that ρA(N) is finite.
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Isomorphism invariant polynomials

Definition (Finite kinship class)
When ρ is a finite signature and A is a finite set we say that
StructρA is a finite kinship class.
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Isomorphism invariant polynomials

Given a set of variables X the symmetric group ΣX of
permutations of X acts on the corresponding polynomial
algebra R[X] for some unital commutative ring R.
The polynomials invariant under this action are the symmetric
polynomials, which themselves form an R-algebra.
A classical result of Hilbert is that certain very simple
elementary symmetric polynomials generate this algebra of all
symmetric polynomials.
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Isomorphism invariant polynomials

Definition (Monomial yA)
Given a finite signature ρ on an index category I , a finite set A,
and a structure A := (A,F) ∈ StructρA we define

yA :=
∏

N∈Ob(I )

∏
a∈F(N)

xN,a.
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Isomorphism invariant polynomials

Definition ((ρ,A) polynomial algebra)
Given a commutative ring R, a finite signature ρ, and a finite set A
we define the (ρ,A) polynomial algebra over R to be the
subalgebra of R[XρA] which is generated by YρA. We denote this
algebra by PolρA(R) and its universe by PolρA(R).
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Isomorphism invariant polynomials

Definition (Action υ)
We define a group action υ: ΣA → Aut(R[XρA]) by setting
(υ(σ))(xN,a) := xN,(ρσ(N))(a) and extending.

Definition (Symmetric polynomial)
A polynomial p ∈ PolρA(R) is called symmetric when for every
σ ∈ ΣA we have that (υ(σ))(p) = p.
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Isomorphism invariant polynomials

Definition (Action ζ)
We define a group action ζ: ΣA → ΣStructρA

by

(ζ(σ))(A,F) := (A, ρσ ◦ F).
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Isomorphism invariant polynomials

Definition (Isomorphism classes of structures)
We define

IsoStrρA :=
{
Orbζ(A)

∣∣ A ∈ StructρA
}
.

Definition (Elementary symmetric polynomial)
Given a finite signature ρ, a finite set A, and an isomorphism class
ψ ∈ IsoStrρA we define the elementary symmetric polynomial of ψ
to be

sψ :=
∑
A∈ψ

yA.

The elementary symmetric polynomials are symmetric
polynomials.
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Isomorphism invariant polynomials

Theorem (A. 2022)
Given a polynomial f ∈ SymPolρA(R) of degree d there exists a
polynomial g ∈ R[ZρA] of weight at most d such that f = g|Zρ

A=Sρ
A
.
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Thank you!


