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Algebraic Structures

Definition (Cartesian power)

For a natural r ≥ 1 we define the r th Cartesian power of a set A to
be

Ar := {(a1, . . . , ar )|(∀1 ≤ i ≤ r)ai ∈ A}.

We define A0 := {()} where () is the empty tuple.

Definition (Algebra)

An algebra A is a pair (A,F = {f1, . . . , fn}) where A is a nonempty
set and each of the fi is a function fi : Ar → A for some integer
r ≥ 0. The fi are called the operations of A.



Example: An Algebra A

Let A = {a, b, c}. Consider the algebra A = (A, {∨}) where
∨ : A2 → A is given by the following table.

∨ a b c
a a c c
b c b c
c c c c

a b

c



Varieties

Definition (Variety)

A variety of algebras is a class of algebras closed under taking
homomorphic images, subalgebras, and products.

For those who have had some abstract algebra, the three operators
referred to in the above definition are generalizations of the same
concepts for groups and rings. For finite-dimensional vector spaces
they correspond to taking images under linear maps, subspaces,
and direct products.



Example: The Variety of Semilattices

Definition (Semilattice)

A semilattice is an algebra of the form S = (S , {∗}) where for all
x , y , z ∈ S we have that ∗ : S2 → S satisfies

(Associativity) (x ∗ y) ∗ z = x ∗ (y ∗ z),
(Commutativity) x ∗ y = y ∗ x , and
(Idempotence) x ∗ x = x .

Our algebra A from before is a semilattice.

∨ a b c
a a c c
b c b c
c c c c

a b

c



Equational Classes

Definition (Equational class)

An equational class is a class consisting of all algebras which
satisfy a fixed set of identities.

For example, the class of all semilattices is an equational class.
One might wonder whether there are varieties which are not
equational classes.

Theorem (Birkhoff’s Theorem, 1935)

Every variety is an equational class.



Complex Algebras

Definition (Complex algebra)

Given an algebra S = (S , {·}) we define the complex algebra S+ by
S+ := (Sb(S), {∩,∪,∼,�,∅, S}) where Sb(S) is the power set of
S , ∩ and ∪ are set intersection and union, respectively, and ∼ is
set difference. Given X ,Y ⊂ S we define
X � Y := {x · y |x ∈ X and y ∈ Y }.

Given a variety of algebras we would like to understand which
identities are satisfied by its complex algebras.



Example: The Complex Algebra A+

Below is the operation table for � in A+.

� ∅ {a} {b} {c} {a, b} {a, c} {b, c} A

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅
{a} ∅ {a} {c} {c} {a, c} {a, c} {c} {a, c}
{b} ∅ {c} {b} {c} {b, c} {c} {b, c} {b, c}
{c} ∅ {c} {c} {c} {c} {c} {c} {c}
{a, b} ∅ {a, c} {b, c} {c} A {a, c} {b, c} A
{a, c} ∅ {a, c} {c} {c} {a, c} {a, c} {c} {a, c}
{b, c} ∅ {c} {b, c} {c} {b, c} {c} {b, c} {b, c}

A ∅ {a, c} {b, c} {c} A {a, c} {b, c} A



Boolean Algebras

Definition (Boolean algebra)

A Boolean algebra B = (B, {∧,∨,′ , 0, 1}) is an algebra such that
for all x , y , z ∈ B we have

(Associativity) (x ∧ y) ∧ z = x ∧ (y ∧ z) and
(x ∨ y) ∨ z = x ∨ (y ∨ z),

(Commutativity) x ∧ y = y ∧ x and x ∨ y = y ∨ x ,

(Absorption) x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x ,

(Identity) x ∧ 1 = x and x ∨ 0 = x ,

(Distributivity) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), and

(Complements) x ∧ x ′ = 0 and x ∨ x ′ = 1.



Boolean Semilattices

Definition (Boolean semilattice)

A Boolean semilattice B = (B, {∧,∨,′ , ·, 0, 1}) is a Boolean
algebra such that for all x , y , z ∈ B we have

(Normality) x · 0 = 0 = 0 · x ,

(Additivity) x · (y ∨ z) = (x · y) ∨ (x · z) and
(y ∨ z) · x = (y · x) ∨ (z · x),

(Associativity) (x · y) · z = x · (y · z),

(Commutativity) x · y = y · x , and

(Square-increasing law) x ∨ (x · x) = x · x .



Action Matrices

Consider the Boolean semilattice we call B2. The underlying set of
this Boolean semilattice is B = {a, b, 0 = a ∧ b, 1 = a ∨ b}.

· a b

a a b
b b a ∨ b

We can define a function fb : B → B by f (x) := b · x . Since ·
distributes over ∨ (additivity), we find that fb can be viewed as a
linear transformation.

fb(b) = b · b = a ∨ b −→
[

0 1
1 1

] [
0
1

]
=

[
1
1

]



Action Matrices

We can linearize the operations on a Boolean semilattice to find

identities. Let Ma =

[
1 0
0 1

]
and let Mb =

[
0 1
1 1

]
. Left

multiplication by Ma corresponds to left multiplication by a and
similarly Mb corresponds to left multiplication by b. We call the
matrix Mx associated to x in this way an action matrix for x .

· a b

a a b
b b a ∨ b

−→

[
1
0

] [
0
1

]
[

1 0
0 1

] [
1
0

] [
0
1

]
[

0 1
1 1

] [
0
1

] [
1
1

]



Identity Computation

Observe that the minimum polynomial for Ma is t − 1, while the
minimum polynomial for Mb is t2 − t − 1. The least common
multiple of these polynomials is (t − 1)(t2 − t − 1), so for
M ∈ {Ma,Mb} we have that M satisfies

M3 + I = 2M2.

This implies that for any x and y from B2 we have

(x · x · x · y) ∨ y = x · x · y .



Modal Logic S4.3 and the Variety IBSL

The variety of idempotent Boolean semilattices (IBSL) consists of
those Boolean semilattices which for all x satisfy x = x · x . We
were interested in which smaller varieties were contained in IBSL.
As it turns out, IBSL is term-equivalent to a modal logic called
S4.3, which has already been studied. Previous work by Kit Fine in
the 1970s tells us that every variety contained in IBSL can be
defined by a finite set of identities.
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