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Introduction

In this talk I will introduce linear logic, a resource-aware logic
which generalizes classical logic.
I will describe de Paiva’s categorical model of classical linear
logic.
Finally, given time, I will mention how a similar construction
allows one to model Petri nets.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Linear logic

In classical logic we have the proof-rules weakening and
contraction, given below.

Γ ⊢ ∆
Γ,A ⊢ ∆

WeakeningL
Γ ⊢ ∆

Γ ⊢ A,∆ WeakeningR

Γ,A,A ⊢ ∆

Γ,A ⊢ ∆
ContractionL

Γ ⊢ A,A,∆
Γ ⊢ A,∆ ContractionR



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Linear logic

If we would like to think of proofs as programs and reduction
of proofs as evaluating a program, these rules cause us a big
problem.
It turns out that their presence allows us, through the process
of cut-elimination, to obtain many different reduced proofs of
the same proposition.
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Linear logic

In linear logic we use two modalities, ! and ?, to mark the use
of weakening and contraction on the left or right, respectively.
We refer to ! as “of course”, “bang”, or “bling”, and we refer
to ? as “why not”.

Γ ⊢ ∆
Γ, !A ⊢ ∆

WeakeningL
Γ ⊢ ∆

Γ ⊢ ?A,∆ WeakeningR

Γ, !A, !A ⊢ ∆

Γ, !A ⊢ ∆
ContractionL

Γ ⊢ ?A, ?A,∆
Γ ⊢ ?A,∆ ContractionR
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Linear logic

The language of (classical) linear logic is given in
Backus–Naur form as

A ::= p | p⊥ | A ⊗ A | A ⊕ A | A & A | A ` A
| 1 | 0 | ⊤ | ⊥ | !A | ?A.

The connectives ⊗ and ` are called multiplcative conjunction
and multiplicative disjunction, respectively.
The connectives ⊤ and ⊥ are also considered multiplicative.
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Linear logic

Note that we can now explain the interpretation of Γ ⊢ ∆ in
linear logic.
We interpret Γ ⊢ ∆ as saying that the multiplicative
conjunction of Γ entails the multiplicative disjunction of ∆.
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Linear logic

The language of (classical) linear logic is given in
Backus–Naur form as

A ::= p | p⊥ | A ⊗ A | A ⊕ A | A & A | A ` A
| 1 | 0 | ⊤ | ⊥ | !A | ?A.

The connectives & and ⊕ are called additive conjunction and
additive disjunction, respectively.
The connectives 1 and 0 are also considered additive.
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Linear logic

Note that we have “doubled” all of the connectives from
classical logic.
To see why, consider the classical rules for conjunctions and
disjunctions.

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A ∧ B

Γ ⊢ A,B
Γ ⊢ A ∨ B

⊢ 1
Γ ⊢ ∆
Γ ⊢ 0,∆
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Linear logic

For the multiplicative fragment of linear logic we have
corresponding rules.

Γ ⊢ A ∆ ⊢ B
Γ,∆ ⊢ A ⊗ B

Γ ⊢ A,B
Γ ⊢ A ` B

⊢ ⊤
Γ ⊢ ∆

Γ ⊢ ⊥,∆
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Linear logic

For the additive fragment of linear logic we have
corresponding rules.

Γ ⊢ A Γ ⊢ B
Γ ⊢ A & B

Γ ⊢ A
Γ ⊢ A ⊕ B

Γ ⊢ B
Γ ⊢ A ⊕ B ⊢ 1
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Linear logic

Note that while both the multiplicative and additive rules are
admissible in classical logic, they behave differently here.
In the multiplicative case the contexts Γ and ∆ are both
carried forward for ⊗ while in the additive case we need to
have the same context to obtain A & B.
These are distinct in linear logic because contexts are
multisets of propositions, not sets.
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Linear logic

We also have a linear notion of implication, which is defined
by the formula

A ⊸ B := A⊥ ` B.

As one might imagine we have the rule Γ,A ⊢ B
Γ ⊢ A ⊸ B .

We also have the following equivalence:

A ⊗ B ⊢ C ≡ A ⊢ B ⊸ C.
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de Paiva’s “Girard construction”

We also have the following equivalence:

A ⊗ B ⊢ C ≡ A ⊢ B ⊸ C.

This equivalence looks like the adjunction between a tensor
bifunctor and an internal hom in a category:

A ⊗ B → C ∼= A → [B,C].
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de Paiva’s “Girard construction”

In 1987, shortly after Jean-Yves Girard introduced linear logic,
he and Valeria de Paiva met in Boulder.
He encouraged (challenged?) her to produce a model of linear
logic using category theory.
The resulting Girard construction constitutes part of de
Paiva’s PhD thesis.
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de Paiva’s “Girard construction”

We take the previous analogy forward by thinking of
propositions (or contexts) as objects in a category.
We interpret Γ ⊢ ∆ to mean that there is a morphism Γ → ∆.
We would like the binary connectives to be bifunctors.
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de Paiva’s “Girard construction”

In order to perform the Girard construction we start with a
finitely complete category C.
The category GC, our model of linear logic, has for objects
relations on the objects of C.
By definition these are (equivalence classes of)
monomorphisms α:A ↪→ U × X.
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de Paiva’s “Girard construction”

Morphisms from α:A ↪→ U × X to β:B ↪→ V × Y in GC are
pairs

(f:U → V,F:Y → X)

such that there is a unique morphism k:A′ → B′ making a
commutative triangle in the following diagram.

A′ A

B′ U × Y U × X

B V × Y

α′ α

β′ idU ×F

f×idY

β
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de Paiva’s “Girard construction”

If our α and β were set-theoretic relations this diagram tells
use that there is a morphism from α to β when

u α F(y)

implies that
f(u) β y.

We can also describe this by saying that

(idU ×F)−1(α) ≤ (f × idY)
−1(β).
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de Paiva’s “Girard construction”

When C is Cartesian closed (like the category Set), we can
define a bifunctor ⊘ on GC which intuitively has
(u, v)α⊘ β(f, g) when uαf(v) and vβg(u).
We can also define an internal hom [ , ] for GC such that
this ⊘ is left adjoint to the internal hom.
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de Paiva’s “Girard construction”

Assuming C is finitely complete, (even just locally) Cartesian
closed, and also has stable (under pullbacks) and disjoint
coproducts we can define another bifunctor: `.
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de Paiva’s “Girard construction”

Theorem 3 on page 59 in de Paiva’s thesis says that if we
think of ⊘ as the multiplicative conjunction, ` as the
multiplicative disjunction, [ , ] as ⊸, the Cartesian product
as &, and the coproduct as ⊕ then for each entailment Γ ⊢ A
of linear logic there is a corresponding morphism
(f,F): |Γ| → |A| and vice versa.
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de Paiva’s “Girard construction”

There are a couple caveats.
The category GC actually only models linear logic with the
weakened form of the rule for ⊸ given previously.
Linear logic can formulated without negation, but the usual
linear logic has that A ≡ A⊥⊥.
In GC we don’t typically have that A ∼= A⊥⊥.
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