Charlotte Aten

University of Denver

2022 October 17

«4O> «F>r « >

«E>»

DA



Introduction

m This talk is an introduction to the formal theory of statistical
learning.

m We will introduce the Probably Approximately Correct (PAC)
learning model, which was described by Valiant in 1984
following foundational work by Vapnik and Chervonenkis in
the 1970s.

m These slides follow the treatment in

Understanding Machine Learning by Shai Shalev-Shwartz and
Shai Ben-David.
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The papaya story

m You are on a Pacific Island where papayas are a significant
part of the local diet.

m Initial condition: You have never tasted papayas.

m Goal: Learn how to predict whether the papayas you see at
the market are tasty or not.

m Features: You will make your predictions based on color and
softness, as per your experience with other fruit.
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A bit more formally...

m We will work with a domain set X, which in this case is the
set of all possible papayas.

m This set is often a vector of features. In this case a “papaya”
is a pair of a color and a softness.

m We also have a label set Y, which in this case is {0,1} where
1 means “tasty” and 0 means “not tasty”.

m Our experience gives us a training set

S={(ay1) - (xm> ym)}

of pairsin X x Y.

m For example, ((red, firm), 1) may be a member of S in our
case.
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A bit more formally...

m We imagine that we feed all of this information into a
(perhaps abstract) machine, our learner.

m We would like our learner to output a function

h: X =Y,
which we call a predictor (or classifier).

m This function is supposed to determine whether a papaya with
given features is tasty or not.

m In order to understand whether our learner has done a good
job, we need to understand how the training set is generated.
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Generating training data

m Assumption #1: The instances (the papayas in this case) are
generated by some probability distribution D which is not
known to the learner.

m Assumption #2: There exists a “correct” labeling function
f- X — Y which is also unknown to the learner.

m The training set S is then generated by choosing the x;
according to the probability distribution D and the labeling
function fwhich maps the vector of features x; to the label y;.

m We are now ready to give a formal measure of the success of
our learner’s predictor.
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Measuring success

m The error of a classifier is the probability that the classifier
does not predict the correct label on a random data point
generated by the probability distribution D.

m Formally, given an event A C X we have that D(A) is a

number which determines how likely it is to observe some
x € A.

m Even more formally, D defines a probability measure on X

which assigns to each (measurable) A C X its measure
D(A) € [0,1].
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Measuring success

m We define the prediction rule error of a classifier h with given
distribution D and correct labeling function f by

Lp Ah) = Puuplh(x) # AIx)] = D({ x € X| h(x) # f(x) }).

m Remember that the only way the learner can interact with the
environment is through the training set, so the learner is blind
to the underlying distribution D and the correct labeling
function f. In our papayas example, we have just arrived on a
new island and have no idea as to how papayas are distributed
or how to judge their tastiness before actually eating them.
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A simple learning paradigm: Empirical Risk Minimization

m We now give an example of an algorithm for learning.

m Algorithm input: A training set S, sampled from an unknown
distribution D and labeled by some target function f.

m Algorithm output: The function hs: X — Y that minimized
the error Lp A h) with respect to the unknown D and f.

m Difficulty: We don't know what D and f are, so the true value
of Lp A h) is also unknown to us.

m We instead use the training error

Lo(h) = i€ [m] ] A(x) # ).
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A simple learning paradigm: Empirical Risk Minimization

m Since the training sample is the only information about the
world available to the learner it makes sense to look for a
solution h: X — Y which works well on that data.

m The learning paradigm to generate a predictor h which
minimizes Lg(h) is called Empirical Risk Minimization (ERM).

m It is not obvious how to implement ERM in practice, but we
will leave that for another time.
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Another nightmare: Overfitting

m Consider a new learning task where X := [0, 1]?, Y:= {0,1},
f= lxlg%' and D is the distribution given by the Lebesgue
measure on the square.

m Given any finite training set S we can make a predictor

hs(x) y; when x = x; for some i € [m]
X) = X
> 0 otherwise

m Clearly we have Lg(hs) = 0 so this predictor looks good on
our training set.

m However, the true error for such a predictor is

LpAhs) =D ({x e [0,1)2 ‘ hs(x) # Lt }) = %
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Another nightmare: Overfitting

m This situation is not as artificial as it may seem, and it will
the real world.

not always be obvious when a predictor of this form arises in

m Also, we must consider extremal situations like this when
formulating a general approach to a learning task.
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ERM with inductive bias

m One way to deal with overfitting is by introducing a
hypothesis class H C YX from which will will assume our
correct labeling function £: X — Y has been chosen.

m Our ERM learner can then use this additional assumption that

f € H along with the training set S to make a predictor
h: X =Y.

m |deally H should be chosen appropriately for the problem at
hand, but we will come to that another time.
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Finite hypothesis class

m The easiest way to restrict the class of hypotheses is by
imposing an upper bound on its size.

m It turns out that if  is finite then ERM4 will not overfit
provided that it is based on a sufficiently large training sample
as a function of the size of H.

m Given a training set S and correct labeling - X — Y we choose
hs € argmin, ¢y, Ls(h),

which is a hypothesis which achieves the minimum value of Lg
over H.
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Realizability hypothesis

m We assume there exists some h* € H such that Lp Ah*) = 0.

m This implies that with probability 1 over random samples S we
have that Ls(h*) = 0.

m This assumption is not very realistic, but it is a good place to
start. What we would like to know is the true risk Lp A hs).

m We now will make a reasonable assumption about the
relationship between D and S.
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The i.i.d. assumption

m We assume the examples in the training set are independent

and identically distributed (i.i.d.) according to the probability
distribution D.

m The issue here is that Lp A hs) depends on a randomly chosen
S, so there is a randomness in the choice of the predictor.
That is, Lp A hs) is a random variable.
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Accuracy parameter

m We can never guarantee that the set S we choose will suffice
to direct the learner toward a good classifier.

m We also cannot guarantee perfect label prediction, so we
introduce the accuracy parameter e.

m Success is choosing hs with Lp A hs) < e and failure is
choosing hs with Lp A hs) > e.

m We can only have Lp A hs) > € if our sample is in the set of
misleading examples.
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Accuracy parameter

m One can show that if 7 is a finite hypothesis class, J € (0,1),
e > 0, and m € Z satisfies

s log(171/6)

€

then for any labeling function f and any distribution D for
which the realizability assumption holds we have that with
probability of at least 1 — § over the choice of an i.i.d. sample

S of size m for every ERM hypothesis hs it holds that
LD7f(h5) S €.
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VC-dimension

m Typically our hypothesis class # will not be finite but we can
still obtain a similar result about how many samples we need
to take in order to guarantee a choice of ERM hypothesis hg
it holds that Lp A hs) < e with a probability of at least 1 — 6.

m The key idea is to measure the complexity of the hypothesis

class, rather than its size, and we can do this using the notion
of VC-dimension.

«4O0>» «Fr» «E» «E»

DA™



VC-dimension

Let H be a class of functions from X to {0,1} and let
C={a,...,cm} € X. The restriction of H to C is the set of
functions from C to {0,1} that can be derived from 7. That is,

{0,1}14.

He = {(h(cr), ... h(cm)) - h € H},

where we represent each function from C to {0,1} as a vector in
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VC-dimension

A hypothesis class H shatters a finite set C C X if the restriction
of H to Cis the set of all functions from C to {0,1}. That is,
[Hcl= 219
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VC-dimension

The VC-dimension of a hypothesis class H, denoted VCdim(#), is
the maximal size of a set C C X that can be shattered by H. If H

can shatter sets of arbitrarily large size we say that 7 has infinite
VC-dimension.
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VC-dimension

We say that a hypothesis class H has the uniform convergence
property (with respect to a domain Z and a loss function ¢) when
there exists a function my<: (0,1)? — N such that for every

€,0 € (0,1) and every probability distribution D over Z we have
that if S is a sample of m > mY(e, §) examples drawn i.i.d.

according to D then with probability at least 1 — ¢§ the set S'is
e-representative.
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VC-dimension

Let H be a hypothesis class of functions from a domain X to
{0,1} and let the loss function be the 01 loss. Then, the following
are equivalent:
l 7 has the uniform convergence property.

B Any ERM rule is a successful agnostic PAC learner for H
Bl * is agnostic PAC learnable.
B 7 is PAC learnable.

B Any ERM rule is a successful PAC learner for H.
B # has a finite VC-dimension.
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VC-dimension

Let H be a hypothesis class of functions from a domain X to {0, 1} and let the loss function be the 01 loss.
Assume that VCdim(H) = d < oo. Then, there are absolute constants Cy, C, such that:
. H has the uniform convergence property with sample complexity
d+ log(1/6)
G——=
€2
. H is agnostic PAC learnable with sample complexity

uc
< mYf(e,8) < G

d+ log(1/6)
€2
d+ log(1/8)
1 > <
€
. H is PAC learnable with sample complexity

) & @A)

€2
d+ log(1/6
 d+loe1/0)

€

maq (e,

3) <G

dlog(1/€) + log(1/6)

€
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