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Introduction

This talk is an introduction to the formal theory of statistical
learning.
We will introduce the Probably Approximately Correct (PAC)
learning model, which was described by Valiant in 1984
following foundational work by Vapnik and Chervonenkis in
the 1970s.
These slides follow the treatment in
Understanding Machine Learning by Shai Shalev-Shwartz and
Shai Ben-David.
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The papaya story

You are on a Pacific Island where papayas are a significant
part of the local diet.
Initial condition: You have never tasted papayas.
Goal: Learn how to predict whether the papayas you see at
the market are tasty or not.
Features: You will make your predictions based on color and
softness, as per your experience with other fruit.
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A bit more formally...

We will work with a domain set X, which in this case is the
set of all possible papayas.
This set is often a vector of features. In this case a “papaya”
is a pair of a color and a softness.
We also have a label set Y, which in this case is {0, 1} where
1 means “tasty” and 0 means “not tasty”.
Our experience gives us a training set

S = {(x1, y1), . . . , (xm, ym)}

of pairs in X × Y.
For example, ((red, firm), 1) may be a member of S in our
case.
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A bit more formally...

We imagine that we feed all of this information into a
(perhaps abstract) machine, our learner.
We would like our learner to output a function

h:X → Y,

which we call a predictor (or classifier).
This function is supposed to determine whether a papaya with
given features is tasty or not.
In order to understand whether our learner has done a good
job, we need to understand how the training set is generated.
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Generating training data

Assumption #1: The instances (the papayas in this case) are
generated by some probability distribution D which is not
known to the learner.
Assumption #2: There exists a “correct” labeling function
f:X → Y which is also unknown to the learner.
The training set S is then generated by choosing the xi
according to the probability distribution D and the labeling
function f which maps the vector of features xi to the label yi.
We are now ready to give a formal measure of the success of
our learner’s predictor.
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Measuring success

The error of a classifier is the probability that the classifier
does not predict the correct label on a random data point
generated by the probability distribution D.
Formally, given an event A ⊂ X we have that D(A) is a
number which determines how likely it is to observe some
x ∈ A.
Even more formally, D defines a probability measure on X
which assigns to each (measurable) A ⊂ X its measure
D(A) ∈ [0, 1].
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Measuring success

We define the prediction rule error of a classifier h with given
distribution D and correct labeling function f by

LD,f(h) := Px∼D[h(x) ̸= f(x)] := D({ x ∈ X | h(x) ̸= f(x) }).

Remember that the only way the learner can interact with the
environment is through the training set, so the learner is blind
to the underlying distribution D and the correct labeling
function f. In our papayas example, we have just arrived on a
new island and have no idea as to how papayas are distributed
or how to judge their tastiness before actually eating them.
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A simple learning paradigm: Empirical Risk Minimization

We now give an example of an algorithm for learning.
Algorithm input: A training set S, sampled from an unknown
distribution D and labeled by some target function f.
Algorithm output: The function hS:X → Y that minimized
the error LD,f(h) with respect to the unknown D and f.
Difficulty: We don’t know what D and f are, so the true value
of LD,f(h) is also unknown to us.
We instead use the training error

LS(h) :=
1
m |{ i ∈ [m] | h(xi) ̸= yi }| .
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A simple learning paradigm: Empirical Risk Minimization

Since the training sample is the only information about the
world available to the learner it makes sense to look for a
solution h:X → Y which works well on that data.
The learning paradigm to generate a predictor h which
minimizes LS(h) is called Empirical Risk Minimization (ERM).
It is not obvious how to implement ERM in practice, but we
will leave that for another time.
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Another nightmare: Overfitting

Consider a new learning task where X := [0, 1]2, Y := {0, 1},
f := 1x1≤ 1

2
, and D is the distribution given by the Lebesgue

measure on the square.
Given any finite training set S we can make a predictor

hS(x) :=
{

yi when x = xi for some i ∈ [m]

0 otherwise
.

Clearly we have LS(hS) = 0 so this predictor looks good on
our training set.
However, the true error for such a predictor is

LD,f(hS) = D
({

x ∈ [0, 1]2
∣∣∣ hS(x) ̸= 1x1≤ 1

2

})
=

1
2 .
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Another nightmare: Overfitting

This situation is not as artificial as it may seem, and it will
not always be obvious when a predictor of this form arises in
the real world.
Also, we must consider extremal situations like this when
formulating a general approach to a learning task.
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ERM with inductive bias

One way to deal with overfitting is by introducing a
hypothesis class H ⊂ YX from which will will assume our
correct labeling function f:X → Y has been chosen.
Our ERM learner can then use this additional assumption that
f ∈ H along with the training set S to make a predictor
h:X → Y.
Ideally H should be chosen appropriately for the problem at
hand, but we will come to that another time.
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Finite hypothesis class

The easiest way to restrict the class of hypotheses is by
imposing an upper bound on its size.
It turns out that if H is finite then ERMH will not overfit
provided that it is based on a sufficiently large training sample
as a function of the size of H.
Given a training set S and correct labeling f:X → Y we choose

hS ∈ argminh∈H LS(h),

which is a hypothesis which achieves the minimum value of LS
over H.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Realizability hypothesis

We assume there exists some h∗ ∈ H such that LD,f(h∗) = 0.
This implies that with probability 1 over random samples S we
have that LS(h∗) = 0.
This assumption is not very realistic, but it is a good place to
start. What we would like to know is the true risk LD,f(hS).
We now will make a reasonable assumption about the
relationship between D and S.
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The i.i.d. assumption

We assume the examples in the training set are independent
and identically distributed (i.i.d.) according to the probability
distribution D.
The issue here is that LD,f(hS) depends on a randomly chosen
S, so there is a randomness in the choice of the predictor.
That is, LD,f(hS) is a random variable.
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Accuracy parameter

We can never guarantee that the set S we choose will suffice
to direct the learner toward a good classifier.
We also cannot guarantee perfect label prediction, so we
introduce the accuracy parameter ϵ.
Success is choosing hS with LD,f(hS) ≤ ϵ and failure is
choosing hS with LD,f(hS) ≥ ϵ.
We can only have LD,f(hS) > ϵ if our sample is in the set of
misleading examples.
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Accuracy parameter

One can show that if H is a finite hypothesis class, δ ∈ (0, 1),
ϵ > 0, and m ∈ Z satisfies

m ≥ log(|H| /δ)
ϵ

then for any labeling function f and any distribution D for
which the realizability assumption holds we have that with
probability of at least 1 − δ over the choice of an i.i.d. sample
S of size m for every ERM hypothesis hS it holds that
LD,f(hS) ≤ ϵ.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

VC-dimension

Typically our hypothesis class H will not be finite but we can
still obtain a similar result about how many samples we need
to take in order to guarantee a choice of ERM hypothesis hS
it holds that LD,f(hS) ≤ ϵ with a probability of at least 1 − δ.
The key idea is to measure the complexity of the hypothesis
class, rather than its size, and we can do this using the notion
of VC-dimension.
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VC-dimension

Definition (Restriction of H to C)
Let H be a class of functions from X to {0, 1} and let
C = {c1, ..., cm} ⊆ X. The restriction of H to C is the set of
functions from C to {0, 1} that can be derived from H. That is,

HC = {(h(c1), ..., h(cm)) : h ∈ H},

where we represent each function from C to {0, 1} as a vector in
{0, 1}|C|.
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VC-dimension

Definition (Shattering)
A hypothesis class H shatters a finite set C ⊂ X if the restriction
of H to C is the set of all functions from C to {0, 1}. That is,
|HC|= 2|C|.
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VC-dimension

Definition (VC-dimension)
The VC-dimension of a hypothesis class H, denoted VCdim(H), is
the maximal size of a set C ⊂ X that can be shattered by H. If H
can shatter sets of arbitrarily large size we say that H has infinite
VC-dimension.
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VC-dimension

Definition (Uniform convergence)
We say that a hypothesis class H has the uniform convergence
property (with respect to a domain Z and a loss function ℓ) when
there exists a function mUC

H : (0, 1)2 → N such that for every
ϵ, δ ∈ (0, 1) and every probability distribution D over Z we have
that if S is a sample of m ≥ mUC

H (ϵ, δ) examples drawn i.i.d.
according to D then with probability at least 1 − δ the set S is
ϵ-representative.
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VC-dimension

Theorem (The Fundamental Theorem of Statistical Learning)
Let H be a hypothesis class of functions from a domain X to
{0, 1} and let the loss function be the 01 loss. Then, the following
are equivalent:

1 H has the uniform convergence property.
2 Any ERM rule is a successful agnostic PAC learner for H.
3 H is agnostic PAC learnable.
4 H is PAC learnable.
5 Any ERM rule is a successful PAC learner for H.
6 H has a finite VC-dimension.
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VC-dimension

Theorem (The Fundamental Theorem of Statistical Learning (Quantitative Version))
Let H be a hypothesis class of functions from a domain X to {0, 1} and let the loss function be the 01 loss.
Assume that VCdim(H) = d < ∞. Then, there are absolute constants C1, C2 such that:

1 H has the uniform convergence property with sample complexity

C1
d + log(1/δ)

ϵ2 ≤ mUC
H (ϵ, δ) ≤ C2

d + log(1/δ)
ϵ2

2 H is agnostic PAC learnable with sample complexity

C1
d + log(1/δ)

ϵ2 ≤ mH(ϵ, δ) ≤ C2
d + log(1/δ)

ϵ2

3 H is PAC learnable with sample complexity

C1
d + log(1/δ)

ϵ
≤ mH(ϵ, δ) ≤ C2

d log(1/ϵ) + log(1/δ)
ϵ
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