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Introduction

Rosenblatt introduced the perceptron algorithm for binary
classification in 1958.
For those familiar with neural nets, this is basically a single
neuron whose activation/transfer/threshold function is just
the identity.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Perceptron algorithm

We are given a binary classification task for points in Rd.
Our hypothesis class H is the collection of all functions
h:Rd → {−1, 1} of the form

h(x) = sgn(w · x + b)

for some w ∈ Rd and some b ∈ R.
We have that VCdim(H) = d + 1 in this case.
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Perceptron algorithm

The perceptron algorithm takes a training set

{(x1, y1), . . . , (xm, ym)}

as input.
We choose an initial vector w ∈ Rd, say w(1) = (0, . . . , 0) and
an initial constant b ∈ R, say b(1) = 0.
At each iteration of the algorithm, we check whether there is
some i for which

yi(w(t) · xi + b(t)) ≤ 0.
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Perceptron algorithm

For some such i we output

w(t+1) = w(t) + yixi

and
b(t+1) = b(t) + yi.

It is possible to prove that the algorithm terminates after a
certain number of steps, but we won’t discuss that there.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Applying the fundamental theorem

Theorem (The Fundamental Theorem of Statistical Learning (Quantitative Version))
Let H be a hypothesis class of functions from a domain X to {0, 1} and let the loss function be the 01 loss.
Assume that VCdim(H) = d < ∞. Then, there are absolute constants C1, C2 such that:

1 H has the uniform convergence property with sample complexity

C1
d + log(1/δ)

ϵ2 ≤ mUC
H (ϵ, δ) ≤ C2

d + log(1/δ)
ϵ2

2 H is agnostic PAC learnable with sample complexity

C1
d + log(1/δ)

ϵ2 ≤ mH(ϵ, δ) ≤ C2
d + log(1/δ)

ϵ2

3 H is PAC learnable with sample complexity

C1
d + log(1/δ)

ϵ
≤ mH(ϵ, δ) ≤ C2

d log(1/ϵ) + log(1/δ)
ϵ
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Applying the fundamental theorem

In the agnostic case, an explicit upper bound for the sample
complexity is

mH(ϵ, δ) ≤ 432d
ϵ2 log

(
64d
ϵ2

)
+

8
ϵ2

(
8d log

( e
d
)
+ 2 log

(
4
δ

))
and an explicit lower bound for the sample complexity is

mH(ϵ, δ) ≥
8d
ϵ2

assuming that δ < 1
8 .
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Applying the fundamental theorem

Taking ϵ = 0.1 and δ = 1
8 and replacing d with d+1 we obtain

mH(ϵ, δ) ≤ 432(d + 1)
0.01 log

(
64(d + 1)

0.01

)
+

8
0.01

(
8(d + 1) log

(
e

(d + 1)

)
+ 2 log(2)

)
and an explicit lower bound for the sample complexity is

mH(ϵ, δ) ≥
8(d + 1)

0.01

assuming that δ < 1
8 .
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