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Universal algebra gives universal approximation
for neural nets
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Introduction

I first tried looking into the formal mathematical treatment of
neural nets some time in 2019.
At the time the only class of results I found were universal
approximation theorems.
Variants of the original results of Cybenko (1989) and Hornik
(1991) are still being published.
Since I have a universal algebra background I naturally asked:
¿Doesn’t Murskiĭ’s Theorem say something quite similar to
these results?
I will spend the rest of the talk explaining what I mean by this.
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Talk outline

Neural nets and universal approximation
Discrete neural nets and finite algebras
Clones and primality
Statement of Murskiĭ’s Theorem
Sketch of the proof of Murskiĭ’s Theorem
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Neural nets

Definition (Neural net)
A neural net (V1, . . . ,Vr,E,Φ) with r layers consists of

1 a finite digraph (V,E) (the architecture of the neural net) and
2 for each v ∈ V \V1 a function Φ(v):Rρ(v) → R (the activation

function of v)
where

1 V :=
∪r

i=1 Vi,
2 the only edges in E are from vertices in Vi to vertices in Vi+1

for i < r,
3 ρ(v) is the indegree of v in (V,E), and
4 if i ̸= r then every vertex v ∈ Vi has nonzero outdegree.
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Neural nets

A typical neural net. A node vij ∈ Vi is called a neuron in layer i.
We will denote Φ(vij) by ϕij.

x1

x2

x3

ϕ21

ϕ22

ϕ23

ϕ24

ϕ31

ϕ32

We think of the labels xj as variables.
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Neural nets

The activation functions are typically restricted to a nicer
class.
The standard family consists of sigmoid functions of the form
ϕij:Rρ(vij) → R where

ϕij(z) :=
1

1 + e−z·w

for some parameter w ∈ Rρ(vij), called the weight.
In applications neural nets are initialized with a fixed
architecture and some randomly chosen weights, then trained
by adjusting these weights.
In this talk we won’t consider how this training is performed,
but only what the goal of the training is.
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Neural nets

In order to understand that goal, we need to see that neural nets
represent functions. Our example neural net represents a function
g:R3 → R2.

x1

x2

x3

ϕ21

ϕ22

ϕ23

ϕ24

ϕ31

ϕ32

That function is given by
g(x1, x2, x3) := (ϕ31(ϕ21(x1), ϕ22(x1, x2, x3)),

ϕ32(ϕ22(x1, x2, x3), ϕ23(x3), ϕ24())).
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Neural nets

Definition (Function represented by a neural net)
Given a neural net Nr := (V1, . . . ,Vr,E,Φ) the function
represented by Nr is gr:R|V1| → R|Vr| where

1 gr = idR|V1| when r = 1 and
2 when r > 1 we set (gr(x))j := ϕrj((gr−1(x))k)(vr−1,k,vr,j)∈E

where x = (x1, . . . , x|V1|) and gr−1 is the function represented
by the neural net Nr−1 := (V1, . . . ,Vr−1,E′,Φ′) obtained by
deleting the rth layer of Nr.

This definition is using the ordering we placed on the Vi in our
example, but this dependence on the ordering can be removed.
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Neural nets

The goal of training is to produce from a neural net with a
specified architecture and starting weights a neural net with
the same architecture which represents (with an acceptably
small error) a target function h:R|V1| → R|Vr|.
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Universal approximation

We give a simplified version of Cybenko’s result as an example
of universal approximation for neural nets.
Cybenko considers a neural net with r = 3 whose activation
functions are all either from the sigmoid family described
above, are nullary (constant) functions, or are the dot product.
Each function in the sigmoid family can be written as σ(z · w)
where

σ(t) := 1
1 + e−t .

Each constant function R0 → R can be viewed as its image
θ ∈ R.
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Universal approximation

Such a neural net can be constructed to represent any
function of the form

g(z) :=
k∑

i=1
αiσ(z · wi + θi).

Partition In := [0, 1]n into s disjoint, measurable subsets
P1, . . . ,Ps.
The decision function h: In → R of this partition is given by

h(z) := j when z ∈ Pj.

Decision functions are sufficiently general to cover the target
functions appearing in applications of neural nets.
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Universal approximation

Theorem (Cybenko, 1989)
Given a decision function h for a finite measurable partition of In
we have for any ϵ > 0 that there is a neural net (of the form
described previously) which represents a function

g(z) =
k∑

i=1
αiσ(z · wi + θi)

and a set D ⊂ In with m(D) ≥ 1 − ϵ on which |g(z)− h(z)| < ϵ.

Cybenko actually proved something more general but this is
enough for our purposes.
This result shows that there is a neural network with r = 3
(«one hidden layer») which represents with arbitrary precision
any target function we could reasonably choose.
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Discrete neural nets

Definition (Neural net)
A discrete neural net (V1, . . . ,Vr,E,Φ) with r layers on a finite set
A consists of

1 a finite digraph (V,E) (the architecture of the neural net) and
2 for each v ∈ V \ V1 a function Φ(v):Aρ(v) → A (the activation

function of v)
where

1 V :=
∪r

i=1 Vi,
2 the only edges in E are from vertices in Vi to vertices in Vi+1

for i < r,
3 ρ(v) is the indegree of v in (V,E), and
4 if i ̸= r then every vertex v ∈ Vi has nonzero outdegree.
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Discrete neural nets

To my knowledge this analogue of neural nets hasn’t been
discussed before.
Functions represented by discrete neural nets and target
functions for discrete neural nets are defined analogously.
Training a discrete neural net should be done by varying the
activation functions among those in a chosen family.
The goal of training is to produce from a neural net with a
specified architecture and starting activation functions a
neural net with the same architecture which represents (with
an acceptably small error) a target function h:A|V1| → A|Vr|.
Universal approximation for discrete neural nets then has to
do with which such functions h can be written as composites
of some fixed (say finite) family of operations on A.
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Finite algebras

Now it’s time for a really quick crash course in universal algebra.
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Finite algebras

Operations are rules for combining elements of a set together to
obtain another element of the same set.
Definition (Operation, arity)
Given a set A and some n ∈ W we refer to a function f:An → A as
an n-ary operation on A. When f is an n-ary operation on A we say
that f has arity n.
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Finite algebras

Algebras are sets with an indexed sequence of operations.

Definition (Algebra)
An algebra (A,F) consists of a set A and a sequence F = {fi}i∈I of
operations on A, indexed by some set I.

An algebra (A,F) is called finite when A is a finite set. Whether or
not A is finite it is conventional to assume I is finite in most cases,
as we will for the rest of this talk.
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Finite algebras

Given an algebra A := (A, {fi}i∈I) we define a map ρ: I → W
where ρ(i) := n when fi:An → A is an n-ary operation on A.
This map ρ: I → W is called the similarity type of A.
When two algebras A := (A,F) and B := (B,G) have the
same similarity type ρ: I → W we say that A and B are similar
algebras.
Given a similarity type ρ and n ∈ N we define

Algρ,n := {A | A has type ρ and A = [n] } .
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Finite algebras

Given a property P of finite algebras we define

Algρ,n[P] :=
{

A ∈ Algρ,n
∣∣ A has P

}
.

The probability that a finite algebra of type ρ has property P
is then defined to be

Prρ(P) := lim
n→∞

∣∣Algρ,n[P]∣∣∣∣Algρ,n∣∣ .

This gives a finitely additive probability measure on the set
FinAlgρ :=

∪
n∈N Algρ,n.
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Clones

We will need to keep track of all functions which can be built
using the basic operations of an algebra.
Given n ∈ W and a set A we define Opn(A) := A(An).
Given n, k ∈ W, f ∈ Opn(A), and g1, . . . , gn ∈ Opk(A) the
generalized composite

f[g1, . . . , gn]:Ak → A

is given by

f[g1, . . . , gn](x1, . . . , xk) := f(g1(x), . . . , gn(x)).

Note that Opn(A) contains all the coordinate projections pn
k

where
pn

k(x1, . . . , xn) := xk.
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Clones

Definition (Clone)
Given a nonempty set A we say that C ⊂ Op(A) :=

∪
n∈WOpn(A)

is a clone when C is closed under generalized composition and
contains all the coordinate projection operations.

The largest clone on A is Op(A) itself.
The smallest clone on A is Proj(A) := { pn

k | 1 ≤ k ≤ n ∈ W }.
Clones can be viewed as algebras themselves but that
treatment isn’t necessary for this discussion.
For topologists: Clones are examples of operads whose
operation spaces are discrete. For what it’s worth, clone
theory dates back to at least the 1940s.
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Clones

Definition (Term)
Given a similarity type ρ: I → W, a set of variables X, and a set
F := {fi}i∈I which we think of as abstract basic operation symbols,
a term in the language of ρ in the variables X is an element of the
set Tρ(X) :=

∪
n∈W Tn where

T0 := X ∪ { fi | ρ(i) = 0 }

and for n ∈ W we set

Tn+1 := Tn ∪ { fi[t1, . . . , tk] | i ∈ I, k = ρ(i), and t1, . . . , tk ∈ Tn } .
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Clones

That is, Tρ(X) consists of all valid formal composites of the
basic operation symbols {fi}i∈I whose arities are given by ρ
with variable arguments coming from the set X.
Given an algebra A of signature ρ and a term
t(x1, . . . , xn) ∈ Tρ({x1, . . . , xn}) we define the term operation

tA:An → A

by interpreting all the operation symbols appearing in t as
actual basic operations of A in the obvious way.
For example, if ρ is the usual signature for groups then
(xy)(x−1y−1) is a term in the variables {x, y} whereas there
exists an actual commutator term operation on the symmetric
group S3 which is a binary operation on S3.
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Clones

Each algebra A has a corresponding clone of term operations,
which is

Clo(A) :=
∪

n∈W
Clon(A)

where

Clon(A) :=
{

tA
∣∣∣ t ∈ Tρ({x1, . . . , xn})

}
.

This is to say that Clo(A) consists of all the operations on A
which can be built up using the basic operations of A and
(implicitly) projections.
Another way of saying this is that Clo(A) is the smallest clone
in the lattice of clones on A which contains the basic
operations of A.
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Primal algebras

Definition (Primal algebra)
We say that an algebra A is primal when for each n > 0 we have
that Clon(A) = Opn(A).

Primal algebras are those which allow us to express any
(nonconstant) operation as a composite of their basic
operations.
Finite fields of the form Fp for a prime p are primal.
Finite fields of the form Fpk for k > 1 are not primal.
The two-element Boolean algebra B2 := ({0, 1} ,∧,∨, 0, 1,′ )
is primal.
J. B. Nation has an excellent survey of logic on other planets
which describes other primal (or functionally complete)
algebras which play the role of B2 in alien computer systems.
Some are even based on the game rock-paper-scissors...
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Primal algebras

We introduce one last notion related to primality.
An operation f:An → A is said to be idempotent when for all
a ∈ A we have that

f(a, a, . . . , a) = a.

An algebra A is called idemprimal when Clo(A) contains all
idempotent operations on A.
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Murskiĭ’s Theorem

For the rest of this talk we take P to denote the property of
being primal and I to denote the property of being idemprimal.
In 1968 R. O. Davies proved that if ρ is a similarity type
containing a single k-ary operation symbol with k > 1 then
Prρ(P) = 1/e.
In the 1970s V. L. Murskiĭ proved that under the same
assumption on ρ we have Prρ(I) = 1.
He also proved a result about primality for signatures with
more basic operations.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Murskiĭ’s Theorem

Theorem (Murskiĭ, 1970s)
If ρ is a similarity type which contains at least two basic
operations, at least one of which is not unary, then Prρ(P) = 1.
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Murskiĭ’s Theorem (neural net interpretation)

Theorem (Murskiĭ, 1970s)
If ρ is a similarity type which contains at least two basic
operations, at least one of which is not unary, then Prρ(P) = 1.

Theorem (Murskiĭ, 1970s, interpreted in our context)
If ρ is a similarity type which contains at least two basic operations,
at least one of which is not unary, then a randomly-selected finite
algebra A of signature ρ has (with probability 1) the property that
given any target function h:An → Am there exists a discrete neural
net (V1, . . . ,Vr,E,Φ) whose activation functions are all basic
operations of A or projections which represents h.
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Proof sketch

The proof that Prρ(P) = 1 given that ρ has at least two basic
operations, at least one of which is nonunary, is relatively
direct once we have that Prρ(I) = 1 in the case that ρ has a
single binary operation.
One can show that a finite algebra is primal if and only if it is
idemprimal and has no trivial subalgebras.
Let E denote the property of having no trivial subalgebras.
We have that P = E ∩ I and we denote by Ī the complement
of I in FinAlgρ.
It follows from the fact that an algebra (A, f:Ak → A) with
k > 2 has a binary operation in its clone that Prρ(I) = 1 for
any ρ with a single k-ary operation.
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Proof sketch

We have that Prρ(E) = 1 in the case that ρ has at least two
operations, at least one of which is nonunary.
Since

E = (I ∩ E)
⨿

(̄I ∩ E) = P
⨿

(̄I ∩ E)

we have that

1 = Prρ(E) = Prρ(P) + Prρ(̄I ∩ E).

Assuming we can show Prρ(I) = 1 in this case we have that
Prρ(̄I ∩ E) ≤ Prρ(̄I) = 0 and hence Prρ(P) = 1.
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Proof sketch

Let’s now look at the proof that a random finite magma is
idemprimal with probability 1.
This is done by splitting the class of nonidemprimal magmas
into 10 (overlapping) classes and showing that each of these
occurs with probability 0.
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Proof sketch

Let A := (A, ·) be a finite magma of order n. If A is not
idemprimal then at least one of the following holds where
X,Y ⊂ A, a, b, c ∈ A, and α, β ∈ Perm(A).

1 (∃X)(2 ≤ |X| ≤ n − 1 and X · X ⊂ X)
2 (∃X)(3 ≤ |X| ≤ n − 1 and |X · X| ≤ |X|)
3 (∃X)(|X| = 2 and |X · X| = 1)
4 (∃X,Y)(|X| = |Y| = 2, X · X = Y, and |Y · Y| = 2)
5 A · A ̸= A
6 (∃a, b)(a ̸= b, a · a = a · b = b · a = a)
7 (∃X)(1 ≤ |X · A| ≤ |X| ≤ n − 1)
8 (∃X)(1 ≤ |A · X| ≤ |X| ≤ n − 1)
9 (∃a, b)(a ̸= b and (∀c)(a · c = b · c))
10 (∃α, β)(α ̸= idA and (∀a, b)(α(a) · α(b) = β(a · b)))
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Proof sketch

We’ll only consider case (2), which says that

(∃X)(3 ≤ |X| ≤ n − 1 and |X · X| ≤ |X|).

One can show that for any c ∈ {1, . . . , 10} a random magma
satisfies condition (c) and not condition (2) with probability 0.
We will now show that the probability that a random magma
of order n satisfies condition (2) is at most

∑n−1
k=3 ψn(k) where

ψn(k) :=
(

n
k

)2(k
n

)k2

.
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Proof sketch

We will now show that the probability that a random magma
of order n satisfies condition (2) is at most

∑n−1
k=3 ψn(k) where

ψn(k) :=
(

n
k

)2(k
n

)k2

.

Condition (2) is equivalent to having that
(∃X,Y ⊂ A)(3 ≤ |X| = |Y| ≤ n − 1 and X · X ⊂ Y).

Consider X,Y ∈
(A

k
)

where 3 ≤ k ≤ n − 1.
The probability that X · X ⊂ Y is the proportion of Cayley
tables for a binary operation so that the k2-many positions
corresponding to X × X all take values in Y.
A particular spot on the Cayley table is in Y with probability
k/n.
Since there are k2 spots and

(n
k
)

ways to choose each of X and
Y the claim follows.
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We will be done if we can show that

lim
n→∞

n−1∑
k=3

ψn(k) = 0.

We do this by showing that there are c, d ∈ (0, 1) such that
each of the sums∑

3≤k≤cn
ψn(k)

∑
cn≤k≤dn

ψn(k)
∑

dn≤k≤n−1
ψn(k)

converges to 0 as n → ∞.
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We’ll just look at one of the three cases we need to cover,
namely that there exists some d ∈

(1
2 , 1
)

such that∑
dn≤k≤n−1

ψn(k) → 0.

For this we need a sharp version of Stirling’s approximation
for x! which was given by Robbins in 1955.
For all x ≥ 1 we have

√
2πxx+ 1

2 e−xe(12x+1)−1 ≤ x!≤
√

2πxx+ 1
2 e−xe(12x)−1

.

It follows for integers a, b where a > b ≥ 1 that(
a
b

)
<

√
a
((

b
a

) b
a
(

a − b
a

) a−b
a
)−a

.
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Taking 1
2 < d < 1 and setting u = ⌊dn⌋ we have that

(
n
u

)2
< n

((u
n
) u

n
(

n − u
n

) n−u
n
)−2n

.

This bound can be used to show that(
n
u

)2
< n

((
d − 1

n

)d
(1 − d)1−d(1 − d) 1

n

)−2n

.

We also have that(
k
n

)k2

≤
(

n − 1
n

)(dn)2

.
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Combining these estimates yields

ψn(k) ≤ n

( 1(
d − 1

n
)d

(1 − d)1−d

)2(
1
e

)d2
n

(1 − d)−2.

For n > 4 we have that

lim
d→1−

ded2

((
d − 1

n

)d
(1 − d)1−d

)2

≥ 1.

Choosing d < 1 large enough so that the inequality is realized
we have that

ψn(k) ≤ ndn(1 − d)−2

and hence ∑
dn≤k≤n−1

ψn(k) ≤ n2dn(1 − d)2 → 0.
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