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Introduction

m In the 2010s Herman and Pakianathan introduced a functorial
construction of closed surfaces from noncommutative finite
groups.

m Semin Yoo and | decided to produce an n-dimensional
generalization.

m The two main challenges in doing this were finding an
appropriate analogue of noncommutative groups and in
desingularizing the n-dimensional pseudomanifolds which
arose at the first stage of our construction.

m Ultimately we found that every orientable triangulable
manifold could be manufactured in the manner we described.



Introduction

m Our preprint “Orientable smooth manifolds are essentially
quasigroups” may be found at
https://arxiv.org/abs/2110.05660.

m Relevant code appears at
https://github.com/caten2/SimplexBuilder.


https://arxiv.org/abs/2110.05660
https://github.com/caten2/SimplexBuilder
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Herman and Pakianathan's construction

m Given elements a, b € A we can represent that f{a, b) = ¢ with
a corresponding triangle.

m Consider a set A equipped with a binary operation f A2 — A.




Herman and Pakianathan's construction

m If it also happens that d € A with (b, d) = ¢ then we can
continue our picture by adding another triangle.




Herman and Pakianathan's construction

m We may continue in this fashion, building a simplicial complex
whose vertices are x and X for x € A and whose facets are of
the form {)_(, ¥, fix, y)}




Herman and Pakianathan's construction

m If it happens that f{a, b) = f(b, a) then we will have «two»
faces with the same vertices.

m Solution: Only form facets {g, b, fla, b)} when a and b do
not commute under f.




Herman and Pakianathan's construction

m Consider the quaternion group G of order 8 whose universe is
G = {&1, +i, +j, +k}.

m We begin by picking out all the pairs of elements (x, y) € G?
so that xy # yx. We call this collection NCT(G).

m We define In(G) to be all the elements of G which are entries
in some pair (x,y) € NCT(G).

m Similarly, Out(G) is defined to be all the members of G of the
form xy where (x,y) € NCT(G).



Herman and Pakianathan's construction

m In this case we have

NCT(G) = { (£u,xv)

e (49

In(G) = {=£i, &), +k}

SO

and
Out(G) = {+£i, £j, =k} .

m From this data we form a simplicial complex (actually a
2-pseudomanifold) whose facets are of the form {g, iz W}
where (x, y) € NCT(G).



Herman and Pakianathan's construction

m One «sheet» of this complex is pictured below.




Herman and Pakianathan's construction

m There is a partner sheet carrying the opposite orientation on
the cycle formed by the input vertices.




Herman and Pakianathan's construction

m The three 4-cycles

(i =i =), (i k; =i, =k), and (j, k, =, —k).

each carry an octahedron.




Herman and Pakianathan's construction

m This simplicial complex, which we call Sim(G) and Herman
and Pakianathan called X(Qs), consists of three 2-spheres,
each pair of which is glued at two points.

m Deleting these points to disjointize the spheres and filling the
resulting holes yields the manifold we call Ser(G) and Herman
and Pakianathan called Y(Qg).

m In this case Ser(G) is the disjoint union of three 2-spheres.



Quasigroups instead of groups

A (binary) quasigroup is a magma A := (A, f. A> — A) such that if

any two of the variables x, y, and z are fixed the equation

fixy) =z
has a unique solution.

m That is, a quasigroup is a magma whose Cayley table is a
Latin square, where each entry occurs once in each row and
each column.

m All groups are quasigroups, but quasigroups need not have
identities or be associative.



Quasigroups instead of groups

m We didn't need the fact that the quaternion group was
associative (or had an identity element) in order to perform
this construction.

m Consider now the octonion loop L of order 16 whose universe
is L :={+ep, te1,...,Lter}.

m In this case

NCT(L) = {(+e;, tej) | i#jand i,j#0}.



Quasigroups instead of groups

m We can again form sheets as we did for the quaternion group
G previously.




Quasigroups instead of groups

m These sheets pair up to form octahedra as before.

m We find that Sim(L) consists of twenty-one 2-spheres which
are glued together along their vertices in some manner.

m If we disjointize by deleting vertices and then fill in the
resulting holes we obtain the manifold Ser(L), which is the
disjoint union of twenty-one 2-spheres.



Quasigroups instead of groups

m It is an immediate corollary of the Evans Conjecture that
every compact orientable surface is a component of Ser(Q)
for some finite quasigroup Q.

m We'll come back to this later.



The n-ary case

m We can generalize this situation to the creation of a
n-dimensional pseudomanifold from an n-ary operation
A" — A

m The case n = 3 is illustrative.

m Given elements a, b, ¢, d € A we can represent that
fla, b, c) = d with a corresponding tetrahedron.

e/ﬁ



The n-ary case

m We now have a different problem: Up to six tetrahedra could
meet at the triangle {a, b, ¢}.

flc, a, b) b, c, a)

b, 2, 0) P N b0

fla, ¢, b) flc, b, a)




The n-ary case

m Solution: Require that fis invariant under even permutations
of its arguments.

m In this case, fa, b, c) = f(b, ¢, a) = f(c, a, b) but in general

fla, b, c) # (b, a, c).
fb, a, c) (<) fla, b, )




The n-ary case

An n-quasigroup is an n-magma A = (A, f. A" — A) such that if

any n— 1 of the variables xi, ..., x,, y are fixed the equation

f(X17

ceXn) =Y
has a unique solution.

a Latin n-cube.

associative.

m That is, an n-quasigroup is an n-magma whose Cayley table is
m All n-ary groups are quasigroups, but quasigroups need not be



The n-ary case

m Given any group G the n-ary multiplication
(X1, .., Xn) == X1 Xp

is a quasigroup operation on G.



The n-ary case

m We say that an n-quasigroup A is commutative when for all
X1,...,Xp € A and all 0 € Perm,, we have

fixt, -5 %n) = AXo(1)s - - s Xo(n))-

m We say that an n-quasigroup A is alternating when for all
X1,...,%Xp € A and all o € Alt, we have

f(X17 o 7Xn) - f(X0(1)7 o 7X0'(n))‘

m Our “correct” analogue of the variety of groups will be the
variety AQ,, of alternating n-ary quasigroups.



The n-ary case

m There are nontrivial members of AQ,, for each n, but the
easiest examples are either commutative (take the n-ary
multiplication for an abelian group) or infinite (the free
alternating quasigroups).

m For n > 3, every alternating n-ary group is commutative.

m We tediously found the following example by hand:



The n-ary case

m Take S:= (Z/5Z)% and define h: Z/5Z x Alts — Perms by
(h(k7 U))(Xl, X2, X3) = (Xa(l) + k, Xz(2) + k, X (3) T k)

There are 7 members of Orb(h). One system of orbit
representatives is:

{000, 011, 022,012, 021,013,031} .



The n-ary case

m Let A= Z/57 and define a ternary operation . A3 — A so
that
f(h(k; o)) (x1, x2, x3)) = fix1, x2, x3) + k

and fis defined on the above set of orbit representatives as
follows.

Xyz f(X7 .y7 z)
(0[0[0) 0

011
022
012
021
013
031

N B B WO O



The n-ary case

m We reached out to Jonathan Smith to see if anyone had
studied the varieties of alternating n-quasigroups before, but it
seemed that no one had.

m He did, however, give us an example which we generalized
into an alternating product construction which takes an n-ary
commutative quasigroup and an (n+ 1)-ary commutative
quasigroup and yields an n-ary alternating quasigroup which is
typically not commutative.



The n-ary case

Given A == (A, f) € AQ,, we say that a € A" commutes (or is a

commuting tuple) in A when we have for each o € Perm, that

f(a) = f(ac,(l), cooy aa(,,)).

Given A = (A, f) € AQ, we define the noncommuting tuples
NCT(A) of A by

NCT(A) :={a€ A" | a does not commute in A }.




The n-ary case

We say that a homomorphism h: A; — A; of alternating

quasigroups is an NC homomorphism (or a noncommuting
homomorphism) when for each a € NCT(A;) we have that

h(a) = (h(ay), ..., h(an)) € NCT(Ay).

m All embeddings are NC homomorphisms, but there are other
examples as well.

m The class of n-ary alternating quasigroups equipped with NC
homomorphisms forms the category NCAQ,..



The first functor: Open serenation

m Our first construction gives a functor
OSer,: NCAQ, — SMfld,, .

m We define
Sim,: NCAQ, — PMfld,

similarly to our previous examples for n =2 and n = 3.

m We define In(A) to consist of all entries in noncommuting
tuples of A and Out(A) to consist of all (a1, ..., an) where
(a1,...,an) € NCT(A).



The first functor: Open serenation

m We set
Sim(A) ={alacIn(A)}u{a]acOut(A)}

and

SimFace(A USb ({ ,...,gn,@}).

aeNCT (A)
m We define

Sim,(A) = (Sim(A), SimFace(A)).



The first functor: Open serenation

m We create OSer,(A) by taking the open geometric realization
of Sim,(A) (basically all but the (n — 2)-skeleton of the
geometric realization) and then equipping it with a smooth
atlas.



The first functor: Open serenation

m The incidence graph of the facets of Sim(A) for the ternary
quasigroup A from the previous example is pictured.




The first functor: Open serenation

m The 1-skeleton of Sim(A) for the ternary quasigroup A from
the previous example is pictured.




The first functor: Open serenation

m One may verify that OSer(A) is a 3-sphere minus the graph
pictured previously, which is homotopy equivalent to the
wedge sum of 21 circles.



The second functor: Serenation

m For any alternating quasigroup A we may equip OSer(A) with
a Riemannian metric in a functorial manner which makes
OSer(A) flat.

m We then define a Euclidean metric completion functor
EuCmplt: Riem, — Mfld,

which assigns to a Riemannian manifold (M, g) the
topological manifold consisting of all points in the metric
completion of M which are locally Euclidean.



The second functor: Serenation

m The serenation functor
Ser,: NCAQ, — Mfld,
is given by
Ser(A) := EuCmplt(OSer(A), g)

where g is the standard metric on OSer(A).

m In the previous example of the ternary quasigroup A we find
that Ser3(A) is the 3-sphere.



The second functor: Serenation

We say that a connected orientable n-manifold M is serene when
component of Ser(A).

there exists some alternating n-quasigroup A such that M is a




The second functor: Serenation

Every connected orientable triangulable n-manifold is serene.
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The second functor: Serenation

Every connected orientable triangulable n-manifold is serene.

m We will give a proof by pictures in the dimension 2 case.
m Suppose that M is such a 2-manifold with a fixed
triangulation and compatible orientation.




The second functor: Serenation

Every connected orientable triangulable n-manifold is serene.

m Perform the elementary subdivision of each facet of M.




The second functor: Serenation

Every connected orientable triangulable n-manifold is serene.

m The appropriate choice of alternating n-quasigroup A is given

a presentation with generators including {a, b, ¢, d} and
relations d = f(a, b) = (b, ¢) = f{c, a).




The Evans Conjecture and Latin cubes

Given a set A and some n € N we say that § ¢ A" is a partial
Latin n-cube when for each i € [n] and each

n
ar, .-y 3i-1,3i41,- -, an+1 € A
there exists at most one a; € A so that

(317 000y an—l—l) €o.



The Evans Conjecture and Latin cubes

m Evans conjectured that each partial Latin square (i.e. a partial
Latin cube § C A?*1) with |A| = k and |§] < k— 1 could be
filled in so as to obtain a complete Latin square ¢ C A3 with
0 C 1 and Y| = k2.

m This was proven to be true by Smetaniuk in 1981.

m Similar results are known for special classes of
higher-dimensional Latin cubes.



The Evans Conjecture and Latin cubes

m In general a complete Latin n-cube is the graph of an
n-quasigroup operation.

m We say that a partial Latin n-cube is alternating when we
have for each a € Alt, that if

(al,...,an,bl)eﬁ

and
(aa(l), <+ da(n); b2) €l
then by = by.
m Given a finite partial alternating Latin cube § C A" does

there always exist a finite complete alternating Latin cube
) C B™1 such that § C 47?



Thank you!



