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Introduction

m These notes refer to the categorical treatment of PCSPs as
described in: Maximilian Hadek, Tomas Jakl, and
Jakub Oprsal. “A categorical perspective on constraint
satisfaction: The wonderland of adjunctions.” In: arXiv
e-prints (Mar. 2025). arXiv: 2503.10353 [cs.L0]


https://arxiv.org/abs/2503.10353
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Reductions

A promise (decision) problem over some class C' of elements, called

instances is a pair of subclasses Y, N C C. We refer to members
of Y as YES instances and members of N as NO instances.

m We say that a promise problem is well-defined when Y and N
are disjoint. We usually assume this.

m We may write (C, Y, N) to denote a promise problem.



Reductions

A reduction from a promise problem (C, Y, N) to (C', Y’ N')is a
function f: C'— C’ such that f(Y) C Y’ and f(N) C N'.

m We will usually focus on tractable promise problems, which
are those that have polynomial-time algorithm for deciding
whether a given instance is in the YES or NO class.

m We are therefore concerned with efficient reductions, which

are those that can be computed in polynomial time, as these
preserve tractability.



Reductions

m Given objects A and B of a category %', we denote by A — B
the existence of a morphism from A to B in %.

m Similarly, we denote by A -4 B the absence of such a
morphism.



Reductions

Let A and B be objects in the category %. A promise CSP for the
template (A, B) is is the promise decision problem whose instances
are Ob(%), whose YES instances are objects I with I — A, and
whose NO instances are object I with I 4~ B.

m We might write PCSP« (A, B) = (Ob(%), Y(A), N(B)) to
indicate this promise decision problem.

m We might write PCSP(A4, B) as a shorthand when the
category % is clear from context.

m We usually assume that A — B.
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Reductions

Let Ar(%) denote the category of arrows for the category €.
Let f: A — B be a morphism in €.

The map ¢: Ob(%) — Ob(Ar(%)) given by (X)) =1x is a
reduction from PCSP(A4, B) to PCSP(f, f) = CSP(f).

m If [ is a YES instance with g: I — A, then 1; is a YES
instance since (g,fog): 17 — f.

m If [ is a NO instance then certainly there cannot be a morphism
from 1; to f in Ar(%), as this would mean that / — B.



Reductions

m Note that even for a fixed choice of A and B there could be
many such reductions, one for each f: A — B.

m Are these efficient? What do they tell us about the original
PCSP(A, B)?



Fundamental theorem

Let (A, A") and (B, B') be promise templates over the categories

[S°P, Fin| and [T°P, Fin]|, respectively. The following are
equivalent:

B There is a gadget G: S — [T°P,Fin] with G a log-space
reduction from PCSP(A, A") to PCSP(B, B).

B There is a gadget G and homomorphisms A — NgB and
NgB/ — A’

B There are functors L 4 R with A — RB and RB' — A'.

B There is a natural transformation Pol(B, B') — Pol(4, A”).



Gadgets

m We give a gadget G: S — [T°P, Fin| which realizes our
reduction ¢ from before.

m We'll do this in the case where [S°P, Fin] is the category of
graphs, but the same kind of construction should work in
general.



Gadgets

m A combinatorial graph may be thought of as a set V' of
vertices, a set F of edges, and a pair of maps s: £ — V and
t: E — V where s(e) and t(e) are the source and target of

the directed edge e.
m This is a contravariant functor from
&
|/ —
t

to the category Fin.



Gadgets

m We take the category 7 to be the “doubling” of S given by
|7 Wp— g 2}

t1
th ThE

52
to
where 81 0 hV = hE O S9 and t1 o hv = hE o to.

m This is the diagram of a graph homomorphism (with arrows
reversed), so [T°P, Fin] = Ar([S°P, Fin]).



Gadgets

m The gadget G: § — [T°P, Fin] is given by setting G(V) to
be the identity morphism on a graph with a single vertex v
and no edges, G(F) to be the identity morphism on the graph
({vs, v}, {(vs, v¢)}), and taking G(s) and G(t) to map v to
vs and vy, respectively.



Gadgets

m The nerve Ng: [T°P,Fin] — [S°P, Fin] is given by
(Ng(h: B1 — B2))(V) = [T, Fin](G(V), h) = B (V),

(Ng(h: By — Bp))(E) = [T°?,Fin](G(E), h) = B (E),
and (Ng(h))(s) and (Ng(h))(t) behave as the expected
source and target maps from B;(E) to Bi(V).

m This is all to say that Ng(h: By — Bs) = By, so Ng picks
out the domain of a homomorphism.



Gadgets

m Let's go back to our claim that ¢/(X) = 1x is a reduction
from PCSP(A, B) where f: A — B to PCSP(f, f) = CSP(f).

m There is a gadget G of the appropriate type, so we must show
that A — Ng(f) and Ng(f) — B.

m This amounts to showing that A — A4 and A — B, so we can
take 14: A — A and f: A — B to see that the theorem
applies to this situation.

m This means that G - N¢ is a log-space reduction from
PCSP(A, B) to CSP(f).



Gadgets

m For a graph X and a graph homomorphism h: Y7 — Y5 we
have that

[T°P, Fin](G(X), h) = [S°, Fin|(X, Ng(h))

SO

~

[T°P,Fin|(G(X), h) = [S°?, Fin](X, Y1).

m If we take a(X) = 1x then this will be the case, as in our
initial definition of ¢¥/(X) = 1x.



Minion homomorphisms

m It is natural to wonder whether there is a reduction from
CSP(f) to PCSP(A, B), since f: A — B appears to contain
a lot of information about A and B.

m Another part of the fundamental theorem shows us that this
can't be expected in general.



Minion homomorphisms

m Since we know that there is a reduction from PCSP(4, B) to
PCSP(f, f), this means that there is a natural transformation
from Pol(f, f) to Pol(A, B).

m Note that
(Pol(4, B))(n) = [S°?, Fin|(A", B)
while

(Pol(f,f))(n) =
[T°F, Fin](f*, f) =

{(0,7) € (Pol(4))(n) x (Pol(B))(n) | foo =Tof"}.



Minion homomorphisms

m The natural transformation from Pol(f, f) to Pol(A, B) is
given by n,(o,7) = foo.

m It is possible that there are many morphisms A” — B even
when Pol(A) and Pol(B) are very small or have very few
members related by f in this way, so we can't always hope for
a natural transformation back in the other direction.



