The Topology of Magmas

Charlotte Aten

University of Rochester

2017

(ロ)、(型)、(E)、(E)、 E) の(の)

Definition (Magma)

A magma (or binar or, classically, groupoid) is an algebraic structure (S, f) consisting of an underlying set S and a single binary operation $f: S^2 \to S$.

Definition (Operation digraph)

Let $f: S \to S$ be a unary operation. The operation digraph (or functional digraph) of f, written G_f , is given by $G_f = G(S, E)$ where

$$E = \{(s, f(s)) \mid s \in S\}.$$

Definition (Operation digraph for a binary operation)

Let $f: S^2 \to S$ be a binary operation and let $s \in S$. The *left* operation digraph of s under f, written G_{fs}^L , is the operation digraph of $f_s^L: S \to S$ where $f_s^L(x) := f(s, x)$ for $x \in S$. The *right* operation digraph of s under f, written G_{fs}^R , is defined analogously.

Example: Operation Digraphs from $\mathbb{Z}/3\mathbb{Z}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Previous Work in...

- Semigroup theory
- Dynamics and number theory
- Cayley graphs
- Graph theory
- Universal algebra (unary algebras)

Definition (Adjacency matrix)

Let G(V, E) be a digraph, let |V| = n, and fix an order on the vertex set V. The *adjacency matrix* A for G under the given order on V is the $n \times n$ matrix whose *ij*-entry is 1 if there is an edge in G from v_i to v_i and 0 otherwise.

We write A_{fs}^{L} to indicate the adjacency matrix of G_{fs}^{L} and similarly write A_{fs}^{R} to indicate the adjacency matrix of G_{fs}^{R} .

$$A_{+0} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad A_{+1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad A_{+2} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
$$A_{\times 0} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad A_{\times 1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad A_{\times 2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

<□ > < @ > < E > < E > E のQ @

Write s_i to indicate *i* viewed as an element of $\mathbb{Z}/3\mathbb{Z}$. Multiplying a vector by the adjacency matrix of an operation digraph corresponds to applying the corresponding function to the corresponding element.

$$s_2 A_{+1} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = s_0$$
$$s_1 A_{+2} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} = s_0$$

Graph Treks

Theorem

Let A be the adjacency matrix for G with a given vertex ordering. Then $(A^k)_{ij}$ for $k \in \mathbb{N}$ is the number walks of length k from v_i to v_i in G.

It is natural to consider the significance of the product of the adjacency matrices of two or more different graphs on the same set of vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Graph Treks

Definition (Trek)

Let (G_1, G_2, \ldots, G_k) be a tuple of graphs on a common set of vertices V. A *trek* (or (v_i, v_j) -*trek*) on (G_1, G_2, \ldots, G_k) is an ordered list of vertices and edges $v_i, e_1, \ldots, e_k, v_j$ where $e_t \in E(G_t)$ is an edge joining the vertices before and after it in the list.

Theorem (A. 2015)

Let (G_1, G_2, \ldots, G_k) be a tuple of graphs on a set of vertices V under a given vertex ordering and let A_1, A_2, \ldots, A_k be the corresponding adjacency matrices. Then $(A_1A_2 \cdots A_k)_{ij}$ is the number of treks on (G_1, G_2, \ldots, G_k) of length k from v_i to v_j . Multiplying operation matrices corresponds to function composition:

$$A_{\times 2}A_{+1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

This also corresponds to looking at those treks which consist of a step on $G_{\times 2}$ followed by a step on G_{+1} .

Theorem (A. 2015)

Let S be an ordered finite set of elements and let $\{f_p\}_{p\in P}$ where $f_p: S \to S$ be an indexed collection of functions. Let $G_p = G(S, E_p)$ be the operation digraph for f_p and let A_p be the adjacency matrix for G_p under the given ordering for S. If $Q = \{q_n\}_{n=1}^k$ is a finite sequence of k elements of P and $y = s_j$ is a fixed element of S we have that the number of $x \in S$ for which $f^Q(x) = y$ is exactly $\sum_{i=1}^{|S|} \left(\prod_{n=1}^k (A_{q_n})\right)_{ii}$.

Theorem (Sylvester's Rank Inequality)

Let U, V, and W be finite-dimensional vector spaces, let A be a linear transformation from U to V and let B be a linear transformation from V to W. Then rank $BA \ge \operatorname{rank} A + \operatorname{rank} B - \operatorname{dim} V$.

By induction we see that for a finite collection of linear transformations $\{A_i \colon V \to V\}_{i \in I}$ we have rank $\prod_{i \in I} A_i \ge (\sum_{i \in I} \operatorname{rank} A_i) - (|I| - 1) \dim V$.

$$((3(x+2))^3)^{((3(x+2))^3)} = y$$

Let $f_1(x) = x + 2$, $f_2(x) = 3x$, $f_3(x) = x^3$, and $f_4(x) = x^x$. Note that the equation under consideration can be rewritten as $f^Q(x) = y$, where Q is the sequence (1, 2, 3, 4).

$$A_{1} = A_{+2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \quad A_{2} = A_{\times 3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad A_{4} = A_{\uparrow 2}^{R} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: An Equation over $\mathbb{Z}/4\mathbb{Z}$

$$((3(x+2))^3)^{((3(x+2))^3)} = y$$

Since rank $A_{+2} = \operatorname{rank} A_{\times 3} = 4$ and rank $A^R_{\wedge 3} = \operatorname{rank} A^R_{\uparrow 2} = 3$, we have that

rank
$$\prod_{n=1}^{4} A_n \ge \left(\sum_{n=1}^{4} \operatorname{rank} A_n\right) - (|I| - 1)|S$$

= $(4 + 4 + 3 + 3) - (4 - 1)4$
= 2.

Proposition (Sylvester's inequality for functions)

Let X, Y, and Z be finite sets and let $f:X \to Y$ and $g\colon Y \to Z$ be functions. Then

 $|(g \circ f)(X)| \ge |f(X)| + |g(Y)| - |Y|.$

Definition (Operation hypergraph)

Let $f: S^2 \to S$ be a binary operation. The *operation hypergraph* of f, written G_f , is given by $G_f = G(S, E)$ where

$$E = \{(s_i, s_j, f(s_i, s_j)) \mid s_i, s_j \in S\}.$$

Definition (Adjacency tensor)

Let G(V, E) be a 3-uniform hypergraph, let |V| = n, and fix an order on the vertex set V. The *adjacency tensor* A for G under the given order on V is the $n \times n \times n$ hypermatrix whose *ijk*-entry is 1 if (v_i, v_j, v_k) is an edge in G and 0 otherwise.

Recall that given such a tensor we can obtain a bilinear map $A_f : \mathbb{C}^S \times \mathbb{C}^S \to \mathbb{C}^S$ where given $x_1 = (a_s s)_{s \in S}$ and $x_2 = (b_s s)_{s \in S}$ from \mathbb{R}^S we define

$$A_f(x_1,x_2) \coloneqq \sum_{s_i,s_j,s_k \in S} a_{s_i} b_{s_j}(A_f)_{ijk} s_k = \sum_{s_i,s_j \in S} a_{s_i} b_{s_j} f(s_i,s_j).$$

There are many ways to compose binary operations. Let $f,g: S^2 \rightarrow S.$ $(x,y,z) \mapsto g(f(x,y),z)$ $(x,y,z) \mapsto f(f(x,x),g(x,f(x,f(y,z)))).$

Hypergraph Odysseys

We return to our 2x + 1 = y example.

Definition (μ , Σ -odyssey)

Let X and Y be sets of variables and take Σ to be a collection of pairs of the form (e, E) where $E = E_i$ for some $i \in I$ and $e \in (X \uplus Y)^{\rho(i)}$. If there exist evaluation maps $\mu \colon X \to S$ (the endpoint evaluation map) and $\nu: Y \rightarrow S$ (the intermediate point evaluation map) such that for each $(e, E) \in \Sigma$ we have that $(\mu \circ \nu)(e) \in E$ then we say that the collection of edges $\mathscr{O} = (\mu \circ \nu)(e)$ is a Σ -odyssey on the G_i . We say that X is the set of end variables, Y is the set of intermediate variables, $\mu(X)$ is the set of *endpoints*, $\nu(Y)$ is the set of *intermediate points*, Σ is the odyssey type, and $|\Sigma|$ is the *length* of the odyssey. We call a Σ -odyssey \mathscr{O} a μ , Σ -odyssey if $\mu \colon X \to S$ is the endpoint evaluation map of \mathcal{O} for some fixed μ .

Hypergraph Odysseys

End variables: $X = \{x, y, a, b\}$ Intermediate variable: $Y = \{t\}$ Odyssey type: $\Sigma = \{((a, x, t), G_{\times}), ((t, b, y), G_{+})\}_{\text{Bigseries}}$ Let φ denote the logical formula

$$\varphi(a, b, x, y) \coloneqq (\exists t \in \mathbb{Z}/3\mathbb{Z})((a, x, t) \in G_{\times} \land (t, b, y) \in G_{+}).$$

Let A and B be arbitrary rank 3 tensors over \mathbb{C} . Define

$$(\varphi AB)_{ijkl} \coloneqq \sum_{t \in \{0,1,2\}} A_{ikt} B_{tjl},$$

which is the generalized matrix product of A and B corresponding to the logical formula φ . By simple definition-chasing one finds that $\varphi G_{\times} G_{+}$ is the adjacency tensor for the composite operation

$$(a, b, x) \mapsto ax + b.$$

Definition (Operation graph)

Let $f: S \to S$ be a unary operation. The operation graph of f, written \overline{G}_f , is the simple graph G(V, E) which is constructed as follows. For each edge e = (s, f(s)) in G_f define

$$\sigma(e) \coloneqq \begin{cases} \{(s, u_e), (u_e, v_e), (v_e, s)\} & \text{when } f(s) = s \\ \{(s, u_e), (u_e, f(s))\} & \text{when } f^2(s) = s \text{ and } f(s) \neq s \\ \{e\} & \text{otherwise} \end{cases}$$

where u_e and v_e are new vertices unique to the edge e. Take $E = \bigcup_{e \in E(G_f)} \sigma(e)$ and let V be the union of S and all the u_e and v_e generated by applying σ to edges $e \in E(G_f)$.

Embedding Dimension

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Embedding Dimension

Theorem

Every operation graph is planar.

Theorem

Let H be a subdivision of a simple graph H' with n vertices, each of degree at least k + 1 for $k \ge 2$. The graph H cannot appear as a subgraph of any operation graph if $k > \frac{n-1}{2}$.

Definition (Operation complex)

Let $f: S^2 \to S$ be a binary operation. The operation complex of f, written \overline{G}_f , is the simplicial complex whose 2-faces are the edges of the hypergraph G(V, E), which is constructed as follows. Write $(a, b, c, d)_2$ to indicate the set of all 2-faces of the simplex with vertices a, b, c, and d. For each edge $e = (s_i, s_j, f(s_i, s_j))$ in G_f define

$$\sigma(e) \coloneqq \begin{cases} (s_i, u_e, v_e, w_e)_2 & \text{when } |\{s_i, s_j, f(s_i, s_j)\}| = 1\\ (s_i, s_j, u_e, v_e)_2 & \text{when } |\{s_i, s_j, f(s_i, s_j)\}| = 2\\ (s_i, s_j, s_k, u_e)_2 & \text{when } |\{s_i, s_j, f(s_i, s_j)\}| = 3 \text{ and } \tau e \in f \text{ for } some \text{ nonidentity permutation } \tau\\ \{e\} & \text{otherwise} \end{cases}$$

where u_e , v_e , and w_e are new vertices unique to the edge e. Take $E = \bigcup_{e \in E(G_f)} \sigma(e)$ and let V be the union of S and all the u_e , v_e , and w_e generated by applying σ to edges $e \in E(G_f)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Given any magma (S, f) we then know that \overline{G}_f embeds into \mathbb{R}^k but not \mathbb{R}^{k-1} for some $k \in \{3, 4, 5\}$.

Definition (Embedding dimension)

Let (S, f) be a magma with operation complex \overline{G}_f . We refer to the minimal k such that the complex \overline{G}_f embeds into \mathbb{R}^k as the *embedding dimension* of the magma (S, f).

The situation here is more complex than for unary operations.

Embedding Dimension

Let (S, f) be a magma such that for every $x, y \in S$, $x \neq y$, we have that either f(x, y) = x or f(x, y) = y. Every edge $e \in G_f$ then contains at most 2 vertices which belong to S. We can embed \overline{G}_f into \mathbb{R}^3 without self-intersections.

There are also magmas of embedding dimension 3 without this property. Consider $(\mathbb{Z}_3, +)$.

Embedding Dimension

Consider the triangulation Kh12 of the Klein bottle.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We orient faces to obtain a partial operation table.

	а	b	С	d	е	f	g	h	i
а	•	С	d	е	f	g	h	i	b
Ь	•	•	•	•	•	•	•	•	•
С	•	•	•	i	b	•	•	•	•
d		•	•	•	i	•	•	•	•
е	•	•	•	•	•	С	b	•	•
f	•	•	•	•	•	•	i	•	С
g	•	•	•	•	h	•	•	•	b
h	•	•	•	•	•	•	•	•	е
i	.	•	•	•	•	•	•	•	•

This "forbidden substructure" cannot appear in any magma with embedding dimension 3.

- If a magma has embedding dimension n then clearly every submagma has embedding dimension at most n. How does embedding dimension behave under taking products or homomorphic images of magmas?
- If the class "magmas of embedding dimension at most n" is closed under taking homomorphic images, submagmas, and products we would have an equational class (Birkhoff's Variety Theorem).

Spectrum Calculation

Theorem

Let $f: S \to S$ be a function on a set S of size n. Let m(j) denote the number of j-cycles under f and let Z_j denote the multiset which consists of m(j) copies of each j^{th} root of unity. The nonzero part of the spectrum of A_f is the multiset union $\bigcup_i Z_j$.

- Jonathan Pakianathan and Mark Herman of the University of Rochester Department of Mathematics
- Clifford Bergman of the Iowa State University Department of Mathematics

- William DeMeo of the University of Hawaii Department of Mathematics
- National Science Foundation

Thank you.

<□ > < @ > < E > < E > E のQ @